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Abstract

In this present article, the onset of convection in
horizontal layer of a porous medium saturated by a nanofl
is investigated analytically using linear and weakly nonlir
analysis. The model used for the nanofluid incorporates

effect of Brownian motion and thermophoresis. The effect
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the stability of the system is investigated .The analysis rev
that for a typical nanotlid (with large Lewis number) th
prime effect of the nanofluids is via buoyancy effect coup

with the conservation of nanoparticles to the thermal ener

equation being a second;order effect.

Stationary anc

oscillatory modes of convections have beeunditd. It is found
that the critical thermal Raleigh number can be reduced
increased by a substantial amount, depending on whether
basic nanoparticle distribution is tepeavy, by the presence ¢
the nanoparticles .Oscillatory instability is possibi the case
of a bottomheavy nanoparticle distribution. The line
stability analysis is based on normal mode technique, while
nonlinear theory is based on the truncated representation
Fourier series method. A weakly nonlinear analysis is use
obtain the concentration and thermal Nusselt number. T
behavior of the concentration and thermal Nusselt number:
investigated by a solving the finite amplitude equatiol
Obtained results have been presented graphically

discussed in details.
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1. Introduction
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particles (nanopatrticles). The term was coined by Choi [1]. The characteristic feahaeodfuids
is thermal conductivity enhancement, a phenomenon observed by Masuda et al. [2]. This
phenomenon suggests the possibility of using nanofluids in advanced nuclear systems
(Buongiorno and Hu [25]). Nanofluids are mixtures of base fluid suchtas @raethyleneglycol
with a very small amount of nanoparticles such as metallic or metallic oxide particles (Cu, Cuo,
ALGs), having dimensions from 1 to 100 nm. Buongiorno [5] conducted a comprehensive study to
account for the unusual behavior of nangfls based on Inertia, Brownian diffusion,
thermophoresis, diffusiophoresis, Magnus effects, fluid drainage and gravity settling, and
proposed a model incorporating the effects of Brownian diffusion and the thermophoresis.
Studies pertaining to thermal cductivity enhancement by nanofluid have been conducted by
Eastman et al [3], Das et al [4] and others. They claimed30%®increase in thermal conductivity
by using very low concentrations of nanofluid.

Due to applications of nanofluids and porous metfiaory in drying, freezing of foods
and applications in every day technology such as microwave heating, rapid heat transfer from
computer chips via use of porous metal form and their use in heat pipes, One of the most
significant scientific challenges ihe industrial area is cooling, which applies to many diverse
productions including microelectronics, transportation and manufacturing. Technological
developments such as microelectronic devices operating at high speeds, high power engines, a
brighter optial devices and driving increases thermal loads, requiring advances in cooling .

There are several studies available in which phenomena related to the onset of
convectional in a porous medium have been investigated. Few of them are Parlstein [6]
,Chakrabaitand Gupta [7], Patil and Vaidyanathan [8], Vadasz [9] convection in porous medium
has been studied by many authors including Horton and Roger [10], Lapwood [11], Nield [12],
Rudraiah and Malshetty [13], Murray and Chen [14], Bhadauria [15], Vafai [dif], &hd Bejan
[17].

Recently, Nield and Kuznetsov [18, 19] for the Darcy Model, Kuznetsov and Nield [20] also
studied local thermal norquilibrium and flow past vertical plate for nanofluids. Agarwal et al
[20], Bhadauria et al [22] studied the same pievh. We study the linear and nonlinear analysis of
thermal instability in a porous layer saturated by nanofluids in this present article.

2. Conservation Equation for a Nanofluid
First, we outline the derivation of conservation equations applicable tarsofluid in the
absence of a solid matrix. Later we modify these equations to the case of a porous medium
saturated by the nanofluid. The Buongiorono model treats the nanofluid as a two components
mixture (base fluid plus nanopatrticles) with the follogriassumptions.
1. Incompressible flow
No chemical reaction
Negligible external forces
Dilute mixture
Negligible viscous dissipation
Negligible radiative heat transfer
Nanoparticles and base fluid locally in thermal equilibrium.
In sectlons 2 and 3, all the variables are dimensional. The continuity equation for the nanofluid is
bv =0 Q)
Here v is the nanofluid velocity.
The conservation equation for the nanopatrticles in the absence of chemical reactions is

\'@WPWN
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Where f is nanoparticle volume fractions jis the nanoparticle mass density andis the

diffusion mass flux for the nanoparticles, given as the sum of two diffusion terms (Brownion
diffusion and thermophorosis )by

o . pT
Jp=Jpe fipr =riDs D pT? )
OCKSNNY2LIK2NBaAad Aa GKS aLI NIAOEtSé¢ Sljda @l f Sy
Here D, is the Brownian diffusion coefficient given by the Einstimkes Equation
D, = ke T
30 at,
Where k; Boltzmann's constant,m is the viscosity of the fluid and is the nanoparticle

(4)

diameter. Use has been made of the expression

p mbT
V, =b—— 5
n= b (5)
For the thermophoretic velocity, here r is the fluid density and the proportionality factdr
is given by

b=0.26—% _ (6)
2k + kp

Where k andkp are the thermal conductivities of the fluid and the particle material. Hence the
thermophoretic diffusion flux is given by

. bT

Jor=r, fr = 'pDT? (7)

Where the thermophoretic diffusion coefficient is given by

D, =57 (8)
r

Esg. (2) and (3) then produce the conservation equation in the form

Wive =3, mD+D 9)

Mt ¢ T

The momentum equation for a hanofluid takes the same form as for a pure fluid , but it should be
remembered thatmis strong function off .If one introduce a buoyancy force and adopts the

Boussinesq approximation , then the momentum equation can be written as

rg%w.a 0= .0 Av by, (10)
g -

Where

r=17ror€ -)f (11)

The nanofluid density can be approximated by the ba#leid density 7, when £ is small. Then
when the Boussinesq approximation is adopted the buoyancy term is approximated by

rg@ fr1 N ret mRg (12)
The thermal energy equation for a nanofluid can be written as
rcgeﬁ+v. 5] g: qbh, 4j,
cHt *
(13)
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where c is the nanofluid specific heat, T is the nanofluid temperathpés the specific enthalpy

of the nanoparticle material and q is the energy flux, relative to a frame moving with the
nanofluid veocity v, given by

9= % B I,

(14)

where k is the nanofluid thermal conductivity. Substituting (E4) in Eq (13) yields

rc%%+v.ﬂ g:.@ P Gj,. T, (15)

In deriving this equation use has been made of a vector identity and the fact(deriving from
assunption (7)) that bh, =c, ®,where C,is the nanoparticle specific heat of the material is

constituting the nanoparticles while c is the specific heat (at constant pressure)of the fluid. Then
substitution of Eq (3) ikqg (15) gives the final form

rcge%+vﬂ' 8-(!& TP % l% Ng:) D (16)
¢

3. Conservation Equation for a Porous Medium Saturated by a Nanofluid

We consider a porous medium whaose porosity is denotecelapd permeability by K. A
subscript s will now be used to denote properties of the solid matrix. The Darcy velocity is
denoted byv, .This is relatedd v by v, =ev.we now have to deal with the following four field
equation (corresponding to Eq (1), (10), (16), (9) for total mass, momentum, thermal energy and
nanoparticle, respectively
Py, =0 17)

fzi”:t“ez ', 3= pouR, B vy & (A1 o1 (T BY) ¢

(18)

(et D) v B =(® TP (e9gn @ BT (19
W.l, g =p, mD+2] (20)
i e T

Here we have introduced the effect of viscostty the effective heat capacityfrc) and the
effective thermal conductivity_ of the porous medium.

In deriving Eq (1#)20) we have assumed that the Brownian motion and thermophoresis
processes remain coherent while volume averages ovepeaesentative elementary volume are
taken. This assumption can be questioned .In the context of modeling transport in porous media,
Eq (17) and (18) are standard. Eq (20) involves just intrinsic quantities in the sense that the
average is being taken ovtre nanofluid only and the solid matrix is not involved. The question
thus reduces to whether the terms within the square brackets on the tigimd side of Eq (19)
need modification. We recall that in nanofluids the particles are so small that for gahcti
purposes they remain in suspension in a uniform manner. We emphasize our assumption that the
nanoparticles are suspended in nanofluid using either surfactant or surface charge Technology,
something that prevents particles from agglomeration and depasion the porous matrix. We
suggest that then it is reasonable to assume as a first approximation that no modification to Eq
(19) is necessary.
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4. Application to the Horton—Rogers—Lapwood Problem

We select a coordinate frame in which theaxs is aligned vertically upwards. We
consider a horizontal layer of a porous medium confined between the plane® andz = H.
From now on asterisks are used to denote dimensional variables (previously an asterisk has not
been needed because all the variables were dimensional). Each boundary wall is assumed to be
impermeable and perfectly thermally conducting. The temperaturetha lower and upper wall
are takento beT, andT,Z G KS FT2NI¥SNJ 6SAy3I GKS 3ANBFGSNI® C2NJ
hold and the OberbegBoussinesq approximation is employed. Homogeneity and |beahtal
equilibrium in the porous medium are assumed. The reference temperature is takenTfo e
the linear theory being applied here the temperature change in the fluid is assumed to be small in
comparison withT, . Eq (18)(20) takes the form

%%: Vo grp LR (o)) g (21)
(fc)m“%ﬂ ©),vp & Ek “H) (e 9gQ " BTH(QAT) T BT

(22)

%ﬁvz}.ff B, 2G (B /T)?TE 23)

We write v, = (U, Vv, W)
We assume that the temperature and the volumetric fraction of the nanoparticles are constant on
the boundaries. Thus thieoundary conditions are

w =0T =,/ Hatz 0 (24)

w =0T =L,/ Fatz H (25)

We recognize that our choice of boundary conditions imposed fonis somewhat
arbitrary. It could be argued thatero particle flux on the boundaries is more realistic physically,
but then one is faced with the problem that it appears that no steatdye solution for the basic
conduction equations is then possible, so that in order to make analytical progreseddssary
to freeze the basic profile f@f , and at that stage our choice of boundary conditions is seen to be
quite realistic.

We introduce dimensionless variables as follows. We define
xY,2=(X,Y,2)/ H t=ta,/ sH,

(uv,W=(u,v,w)H/a,, p=pK mg

f _r-¢ T T T

= , = ¢ 26
A A 2
Where
IRy (27)
(pr)f ( Ep)f
Then Eq (17) and (24§25) take the form
bv =0 (28)
Oa%’: - v RrlE RalE Rng (29)
Hoveg =M g % 14 (30)
it Le Le
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IV i g 2L g N ooy (31)
S e Le Le
w=0,T 4Ff 6atz C (32)
w =0T =0f %atz 1 (33)
here
rg &KH(T - T, . £ AP

VP N (T c),Rm:[rJi+ra_flﬂgKH’Rn:(rp P - £2)gKH

Va DB ma ma, ma,

NA DT(TP: B Tc*) , NB - E(/’C)p
DT (F1 - £5) (ro)

The parameter Le is a Lewis number &Rl is the familiar thermal Rayleigbarcy number. The
new parameters Rm and Rn may be regarded as a -Hasikity Rayleigh number and a

(71 - 7o),

concentration Rayleigh number respectively and Vadasz nunxyla&re'zpIr (Pr:%, is the
Da 1

Prandtl number, 5, - K is the Darcy number) angk £ the normalized porosity. The parameter
d? g

N, is a modified diffusivity ratio and is somewhat similar to the Sort parameter that arises in
crossdiffusion phenomena in solutions, whild, is a modified particlelensity increment. In the
spirit of the OberbeckBoussinesq appraxation, Eq (29) has been linearized by the neglect of a
term proportional to the product off and T. This assumption is likely to be valid in the case of
small temperature gradients in a dilute suspension of nanoparticles.

4.1. Basic solution
We seek a timéndependent quiescent solution of Eq (283) with temperature and
nanoparticle volume fraction varying in thedirection only that is a solution of the form

v=0,T=T, (2),f =7,(2)
Eq (30) and (31) reduce to
d°T, , No &/, dT, N.NoAdT '

~ b a6 &
dZ Le dz dz Leg dz = (34)
d%, d’T,

N ) 35
aZ " dz (35)
Using the boundary condition (32) and (33) Eq (41) maybe integrated to give
f,= N, T, @ NJZ N; (36)
and substitution of this into Eq (34) gives

d°T, , (- NN, dT,
dz? Le dz
The solution of Eq (37) satisfying Eq (32) and (33) is

1- @ @ NaNa( 2)/Le

0 (37)

T, = (38)

1- € (1 Np)Ng/Le
The remainder of the basic solution is easily obtained by first substituting (AZxtp obtain f,
and then using integration of E89)to obtainP, .

According to Buongiorno [5] for most nanofluids investigated sd_(ﬂrfl* - fg) is large
of orderl® - 1Fand since the nanoparticle fraction decrement is typically no smaller Ban
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this means so thakeis large of orderl(” - 1Gwhile N, is no greater than about 10hen the
exponents irEq (37) and (3&re small and so to a good approximation one has

T, =1-Z (39)
and so
Jb=12 (40)

4.2. Perturbation solution
We now superimpose perturbations on the basic solution. We write

V=Vi, p=p, i, T, =T, i, f=Ff +f (41)
Substitute in Eq (28f33), and linearize by neglecting products of primed quantities. The
following equations are obtained when Eq (39) and (40)used.

BVi =0 (42)
oa%: - v Rale RA g (43)
E_ = Ne 2 [t JH 82NANB_T|; (44)
it Leg B - Le z

Wi 1y =t 5 Naoopg (45)
st e Le Le

wi=0,Ti=0,/ =0 at Zz=0andatz=1 (46)

It will be noted that the parametelRm is not involved in these and subsequent equations. It is
just a measure of the basic static pressure gradient.

For the case of a regular fluidot a nanofluid) the parametei®n, N, and N are zero,
the second term in Eq (45) is absent becaulg /dz=0and then Eq (45) is satisfied trivially.

The remaining equations ameduced to the familiar equations for the HortgRogetLapwood
problem.

The six unknownsi , v, W, p',T ,7 can be reduced to three by operating on Eq (43)
with Ecurl curl and using the identity curl curlgrad div-D? together with Eq (42).
The result is
P’wi +g,s Bv i Ra 28 Rn7 | (47)
HereDZH is the twodimensional Laplacian operator on the horizontal plane.

The differential Eq. (47), (44), (45) and the boundary conditions (46) constitute a linear
boundaryvalue problem that can be solved using the method of normal modes.

We write
W,T ./ )=IW2, @3 Fxfexp( st Hilx im) (48)
and substitute into the differential equations to obtain
(l+os)(D* @’ )W Rad Q@QRna G« (49)
a N 2N,.N 0
W+ +AD A EBD g% s 5 b 0 50
gpz Le Le 9 _'I\_ée (50)
1 N a1 S o
“W- A(D* -a° D> &) = § O 51
(0 ) Qe (P A S 51
W=0, Q atZ Gand at Z 1, (52)
Where
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D1 = And a=(%> m)"? (53)
z

thus a is a dimensionless horizontal wave number.

For neutral stability the real part of s is zero. Hence we now \8rité 1w, where w is real
and is a dimensionless frequency. We now employ a Galgriimweightedresiduals method to
obtain an approximate solution to the system of Eq ¢§3§). We choose as trial functions
(satisfying the boundary conditions)

W,=Q = Fsingpz p 1,%3.. (54)
write

W=a’:1'°bV\{) Q =é :-1BP g’F =a :-1CP g

(55)

substitute into Eq (49)(51), and make the expressions on the dedind sides of those equations
(the residuals) orthogonal to the trial functions, thereby obtaining a system of 3N linear algebraic
equations in the 3N unknown#\ ,B ,C ,p=12,3,.N. The vanishing of the determinant of
coefficients produces the eigenvalue equation for the system. One can reBards the
eigenvalue. Thuga, is found in terms of the othgparameters.

5. Linear Stability Analysis

5.1 Non Oscillatory Convection
First, we consider the case of noscillatory instability, whenw =0 for the first
approximation we take N =1. This produces the result

2 2
Ra :(p;—zg’) (N, aLf) Rr. (56)
Finding the minimum as a varies results in
Ra =40 N, % (57)
(; -

with the minimum being attained ag = p. We recognize that in the absence of nanoparticles

we recover the wetknown result that the critical Rayleigh number is equal pb24 Usually when

one employs a singleerm Galerkin approximation in this context one gets an overestmat

about 3% (e.g. 1750 instead of 1708 in the case of the standard Bénard problem) but in this case
the approximation happens to give the exact result. As we have noted for a typical nanofluid Le is
of order 10° - 1¢ and N, is not much greater than 10. Hence the coefficiehtRn in Eq57)is

large and negative. Thus under the approximatisrshave made so far we have the result that
the presence of nanoparticles lower the value of the critical Rayleigh numbeally by a
substantial amount in the case when Rn is positive, that is when the basic nanoparticle
distribution is a topheavy one. It will be noted that in E§7) the parameteN, does not appear.

The instability is almost purely a phenomenon due to buoyancy coupled with the conservation of
nanoparticles. It is independent of the contributions of Brownian motion and thermophoresis to
the thermal energy equation. Rather, the Browmiaotion and thermophoresis enter to produce
their effects directly into the equation expressing the conservation of nanoparticles so that the
temperature and the particle density are coupled in a particular way and that results in the
thermal and concenttion buoyancy effects being coupled in the same way. It is useful to
emphasize this by rewriting Eq (57) in the form
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Ra, +(N, +5)Rn 4p°

(58)

and noting that he lefthand side is the linear combination of the thermal Rayleigh nunter

and the concentration Rayleigh number Rn. The problemnaogous to the doubldiffusive
problem discussed in Section 9.1.1 of Nield and Bejan [23]. It is also analogous to the
bioconvection problem discussed by Kuznetsov and Avramenko [24]. We have defined Rn in a way
so that it is positive when the appliedagicle density increases upwards (the destabilizing
situation). We note thatRa takes a negative value wheRn is sufficiently large. In this case the
destabilizing effect of concentration is so great thia¢ toottom of the fluid layer must be cooled
relative to the top in order to produce a state of neutral stability. We emphasize that the simple
expression in Eq (53Yyises because the Lewis number has been assumed to be large. In order to
estimate the contibution of the terms involving\N, we have investigated the twierm Galerkin
results. The expression in the eigenvalue equation is complicated and it is difficult to make a
statement that is simultaneously precise, simple and geheHowever, it is clear that the
functions of N are of second degree. We conclude that for practical purposes Eds(88yood
approximation.

5.2 Oscillatory Convection.
We now consider the cas#, 0. We confine ourselves to theneterm Galerkin
approximation. The eigenvalue equation now takes the form

Ra=— + [ 0,md I M iw R iRy (59)
N 2 Le s e Le
(—+)a
Le s
where for shorthand we have written
J=p®+a’ (60)

6. Non-Linear Stability Analysis

For simplicity, we consider the case of two dimensional rolls, assuming all physical
guantities to be independent of y. Eliminatitige pressure and introducing the stream function
we obtain

P’Y ®, W REL RaP 0 (61)
kX M

M, HY_ g (BTY (62)

ot W (82

IS, 1Yl o5 No o2y 1 (LY (63)

s en Le Le e(x 2

We solve EdL¢3 subjecting them to stresfsee, isothermal, issanoconcentration boundary
conditions

2

y=22 5 ¥ oatz o1 (64)
Wz

To perform a local nofinear stability analysis, we take the following Fourier expressions

Yy =a aA (nSifmax)sin(npz) (65)
n=lm#2

T=34 4B (tHcos(max)sinfpz (66)
n=lm2
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f=a ac_(tcos(max)sing 2 (67)
n=lm#4

Further we take the modes (1, 1) for stream function and (0, 2) for temperature and (1,1) for
nanoparticle concentration, to get

y =A(®)Sinax)sin(p2) (68)
T = A(t)cos(ax)singz ) +A t)sin(Quz (69)
S= A(9cos(ax)sing z) +A (t)sin(2pz (70)

where the amplitudeg\(t), A(t), A(t),A),A(t) are functions of time and are to be

determined. Taking the orthogonality condition with the eigenfunctions associated with the
considered minimal model we get

AGD _ 1,
B = | A0 aRnA) aRag)] (71)
PO faa) #a a0 A (72)
%: a0 L AOAW (73)
A= Llaa A2 A ey A (74)
dA() 1.1 1%
A= 2 2aiam 468072 22 A0 AW (75)
thus we get
=5 FAD aRnAO aRa) (76)
D,= faA() FA() atA() A (77)
D,= 40°A 1) £ AWMA( (78)
- 1.1 AWM N 1
D= Sitaa A2 Beac) Lay Ay (79)
_1.1, 5 N, 1lap
D= SIapAWM 4AA02 22 AW A (80)
andD,=D, D, B, 0 (81)

One may also conclude that the trajectories of the above equations will be confined to the
finiteness of the Bipsoid. Thus, the effect of the parameters Rn, Ne, on the trajectories is to
attract them to a set of measure zero or to a fixed point to say.

6.1 Heat and Nanoparticle Concentration Transport
The thermal Nusselt numbeXu, (t) is defined as

Heattransportby conduction convect)c

Nu, () = : (82)
Heat transport by conduction
2p/a
T %]
& A U
= 492[,‘,’61— u (83)
‘? HTe\ 1 o
( )dx U
,0
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Substituting expressions (45) and (73) in Eq (86) we get
Nu, () =1 -20 A (1) (84)
The nanoparticle concentration Nusselt numbi, (t) is defined similar to the thermal Nusselt

number. Following the procedure adopted for arriving\ai(t) one can obtain the expression for
Nu, (1) in the form

Nu () =@ -20A(1) WL 2:04(1) (85)

7. Results and Discussion

Theexpressions of thermal Rayleigh number for stationary and oscillatory convections are
givenby equation (56) and (59) respectively.

Figl.ad shows the effect of various parameters on the neutral stability curves for
stationary convection foRn= 0.1,Le=200,N, = 5,e=0.9with variation in one of these
parameters. The effect of nanoparticle concentration Rayleigh nunipeis shown in Fig. 1a. Itis
shown that the thermal Rayleigh number decreases with increase with increase in nanoparticle
concentrdgion Rayleigh numberRn which means that nanoparticle concentration Rayleigh
numberRndestabilizes the system. It should be noted that the negative valuRroindicates a
bottom heavycase while a positive value indicates a-tigavy case. The effect of Lewis humber
Le on the thermal Rayleigh number is shown in Fig. 1b one can see that the thermal Rayleigh
number increases with increases in Lewis nunitegrindicating that the Lewis number stabilizes
the system. The effect of modified diffusivity ratdd, on the thermal Rayleigh number is shown

in Fig.1c that as\, increasesRa, increases and hencal, has a stabilizing effect on the system.

From Fig.1d one can observe that as porogtyncreases thermal Rayleigh humber decreases
which means that the porosity advaesthe onset of convection.

Fig.2af displays the variation of thermal Rayleigh number for oscillatory convection with
respect to various parameters. In Fig.2a it is seen that for negative values of Rn (bottom heavy
case) the thermal Rayleigh number deges as Rn increases which will delay the onset of
convection. As the Lewis number increases the thermal Rayleigh NumbRs, decreases as

seen in Fig.2b which imply that Lewis Numherdestabilizes the system. The modified diffusivity
ration N, do not show any effect on the oscillatory convection (Fig.2c) from the picture 2d, one

can reveal that the porositye destabilizes the system ifooscillatory convection that is an

increase ine decreases the thermal Rayleigh number . As the thermal capacity ration

increases, the thermal Rayleigh number also increases as can be observed infiigl2@nplies

that s has a stabilizing effect on the system for oscillatory convection. In Fig.2f as thermal

Rayleigh number increases Vadasz number decreases which will lead to destabilize the system.
The nonlinear analysis prowd not only the onset threshold of finite amplitude motion

but also the information of heat and mass transport in terms of Nusselt Nu and Sherwood Sh

numbers. TheNu and Sh are computed as the function Rf, (thermal Rayleigh number) and

the variation of these nomlimensional numbers withRa for different parameter values are

depicted in Fig.3g ¢ and 4a c respectively. In Fig.3ac and 4&; c it is observed that each case
Sherwood number is always greater than Nusselt number and both Nusselt number and
Sherwood number start with the coftibn state value 1 at the point of onset of steady finite
amplitude convection. WherRa, is increased beyonda, there is a sharp increased in the value
of both Nu and Sh. However further increase in Ra willadhange Nu and Sh significantly. It is to
be noted that the upper bound of Nu is 3 (similar result were obtained by Malshetty et al). It
should also be noted that the upper bound of Sh is not 3 (similar results were obtained by
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Bhadauria et al). The uppéound of Nu remains 3 only for both clear and nanofluid where as the
upper bound for Sh for clear fluid is 3 but for nanofluid it is not fixed.
In Fig.3a and 4a we observe that as the concentration Rayleigh nuRrbarcreases the
value of Nu andsh decreases, thus showing a decrease in the rate of heat and mass transport.
Fig.3b and 4b shows that as Lewis number increases both Nsa@creases which imply that
increasing the Lewisumber suppresses the heat and mass transport. In Fig. 3c and 4c we observe
that on increasing modified diffusivity ratin, there is no effect on the Nusselt number where as

it increases the Sherwood number (which is similar tesuserved by Bhadauria et al).

In Fig.5a it is observed that as Rn increases Nu decreases, thus showing a decrease in the
heat transport which is similar result observed by Agrawal et al [26]. From Fig.5b we observe as
Lewis number increases the Nu dewes indicating that there is retardation on heat transport.

The madified diffusivity ratio enhances the heat transport as see in Fig.5c.

It is seen in Fig.6a as nanoparticle concentration Rayleigh number Rn increases the
Sherwood number (concentration Nudsnumber) decreases, which implies the suppress of mass
transport. The mass transport is enhanced for Lewis number Ln and modified diffusivitjNratio

as see in Fig.6b and 6c respectively.
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Figure 1. Neutral curve on stationary convection for different values d&) nanoparticle

concentration Rayleigh numbeRn (b) Lewis numberLe (c) Modified diffusivity ratioN,  (d)
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Figure 2. Neutral curve on oscillatory convection for different values (af nanoparticle
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Conclusion

We considelinear stability analysis in a horizontal porous medium saturated by a nanofluid,
heated from below and cooled from above , using Darcy model which incorporates the effect of
Brownian motion along with thermophoresis. Linear analysis has been made usinglmoode
technigue. However for weakly nonlinear analysis truncated Fourier series representation having
only two terms is considered. We draw the following conclusions.

1. For stationary convection Lewis numbée modified diffusiviy ratio N, has a stabilizing

effect while nanoparticle concentration Rayleigh humben and porosity destabilize the

system

2. For oscillatory convection thermal capacity rati® stabilizes the system where as
nanoiparticle concentration Rayleigh numliam, Lewis numberLe and porosity, vadasz
number Va destabilizes the system.

3. For steady finite amplitude motions, the heat and massaport decreases with increase in
the values of nanoparticle concentration Rayleigh numBer, Lewis numberLe, the mass
transport increases with increases in modified diffusivity ratio

4. The transient Nusselhumber and Sherwood number increases with increases in Lewis
number Le and modified diffusivity ratioN, and decreases with nanoparticle concentration

Rayleigh numbeRn
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5. The effect oftime on transient Nusselt number and Sherwood number is found to be
oscillatory when t is small. However when t becomes very large both the transient Nusselt
and Sherwood value approaches to the steady and Sherwood value approaches to the steady
value.

Nomenclature

c Nanofluid specific heat at constant pressure
c, Specific heat of the nanopartical material
(ro), Effective heat capacity of the porous material
d, Nanopartical diameter
Dg Brownian diffusion coefficientmz/ S), given by Eq.(4)
D, Thermophoretic diffusion coefficienir(nz/ S), given by Eq.(8)
h, Specific enthalpy of the nanopartical material
H Dimensional layer depthn)
IR Diffusion mass flux for theanoparticales, given by Eq.(7)
Jor Thermophoretic diffusion ,given by Eq.(7)
k Thermql conductivity of the [lanofluid, (W/m !()
Ky L2t 0l YFYyYyQa O2yadl yld
K, Overallthermal conductivity of the porous medium saturated by the nanofluid
K, Thermal conductivity of the partical material
K Permeability ()
Le Lewis number
N, Modified diffusivity ratio
N, Modified particledensity increment
p Pressure (Pa)
p Dimensionless pressurey K/ma
q Energy flux relative to a frame moving with the nanofluid velogity
Ra, Thermal RayleigtDarcy number
Rm Basiedensity Rayleigh number
Rn Concentration Rayleigh number
Va Vadasz number
t Time (s)
t Dimensionless timet'a, /H?
T Nanofluid temperature (K)
T Dimensionless temperature%
h c
T, Temperature at theipper wall (K)
T, Temperature at the lower wall (K)
v Nanofluid velocity (m/s)
v, Darcy velocitygv

Dimensional Darcy velocity
Themophoretic velocity

< <
o
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(uv.w)  Dimensionless Darcy velocity componeits, v , w ) H/a,, (m/s)
(x,y,2  Dimensionless Cartesian coordinéfe, y.z )/ H; zis the vertically upward

(x,y.z) Cartesian coordinates

Greek symbols

n Thermal diffusivity of the porous medium

b Proportionality factor, given by Eq.(6)

m Viscosity of the fluid

M Effective viscosity of the porous medium
Fluid density

) Nanoparticle mass density

Thermal capacityatio

f Nanoparticle volume fraction

a
,
r
s
£

. . AR
f Relative nanoparticle volume fractl%
-

Superscripts
* Dimensional variable

' Perturbed variable
Subscripts

b Basic solution

f Fluid

p Particle

References

[1]. / K2 A Enhandng thermal conductivity of fluids with nanopartiélek: Signier, D.A.,
Wang, H.P. (eds.). Developmertd applications of Noiewtonian flows, ASE FED, vol.
231/MD vol. 66,1995 , pp.99105

[2]. Masuda, H., Ebatd, > ¢ SNJ YI S Mkemmtion of taekmalcdnductity brndd &
viscosity of liquid by dispersing ultra fine partiéleNetsu Busse, 1998,pp.227%233.

[3]. Eastman, J.A., Ch&,U.S., Yu, W., Thompson, ddhomalously increased effective thermal
conductivities of ethylene glyctlased nanofluid®2 y i F Ay Ay 3 O2 LIBINI y I y 2 |
Phys. Lett78, 2001, pp. 718 720.

[4]. Das, S.K., Puat, N., hiesen, P., Roetzel WiiTemperature dependence of thermal
conductivity enhancement for nanofluilseSME J. Heat Tran&R5, 2003, pp.56¢574

[5]. . dz2 y 3 A 2 Ndhedive vanspait in nanofluidlsASME J. Heat Transi28 2006
pp.24Q@;250.

[6]. Pearlstein, A.XyEffect of rotation on the stability of a doubly diffusive fluid layek. Fluid
Mech.103, 1981 pp.38%; 412

[7. / KIF T NY 6 NIiAZX NobheaDtogidiéhallhe condectibn in airotating porous
mediumX BMech. Res. Commu8, 1981,pp. % 22.

[8]. Patil,t Pwd> + | A R &h geltigkup ¢f Xonv@dive @urrents in a rotating porous
medium under the influence of variable viscoZitit. J. Eng. S&@1,1983 pp.123130.

[9]. * | RI & IFfBe Qoivection in Rotating Porous M&dérarsport Phenomena in Pous
Media, Elsevier, Amsterdajfi998 , pp.28§ 312

[10]. Horton, WX w2 3 S NiBn¥ectiGhdrar®ntsdn a porous medidind. Appl. Physl6,
(1945).

88 International Journal of Engineering, Science and Matheme
http://www.ijesm.co.inEmail: ijesmj@gmail.com




International Journal of Engineering, Science and Mathematics
Vol. 6 Issue 4, August 2017,
ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed &
Listed at: Ulrich's Periodicals Directory ©, U.S.A.,,OpenJ-Gage as wel | as in Cabell’'s Directories o

[11].
[12].
[13].
[14].
[15].
[16].
[17].

[18].

[19].

[20].

[21].

[22].
[23].

[24].

[25].

[26].

Lapwood, E.R.: Convection of a fluid in a porous medium. Proc. Camb. P4, S0,

521 ,1948, pp.364370.

b A St RDnsétoflthermdhali 02y 3SOGA2Yy A yWaker RebNPREmI Y SRA
4,1968 pp.55%560.

WdzRNJ A KX b & The influenderoBScduplédInolacdldr diffusion on the double

diffusive convection in a porous medi@SME J. Heat Tran&081986 pp.872,876.

adzNNIF &8 2 . ¢ Odublé diffSsigs Q2a»S Odi A 2y A yJ. FIUidINRAE dza Y S
201, 147166 ,1989, 147166.

Bhadauria, B.S.: Double diffusive convection in a porous medium with modulated
temperature onthe boundaries. Transp. Porous M&@, 191211 (2007).

+ | T | Nandbdok of Borous Mediataylor and Francis, London (2005).

bASt RX 5 ®Cohkectiont@brglu MediZBrd édn. Springer, New York (2006).

bASt RZI 5d! & ThérzaliyisEabiillly Ande>poroud meétim tayer saturated by

y 2 y 2 Fliit.dzHRaf Mass TransR, 2009a, 57965801

bASt R 5d! &I THedzZChgr@Minkov@Z problem: Or nétural convective
boundarylayer flow in a porousY SRA dzY &l ( dzNJ G S Rint.bHeat Massy | y 2 F f
Transf52,2009h5792;5795

bASt REI 5d! ®IThyaBeyofcorn¥eztiditin d hdrizontedofluid layer of finite

R S LIE#&r>£Mech. B9, 201Q 217%223.

Agarwal, SBhadauria, B.S{, A RR K S & K BherNal instaldiify Dftenanofluid saturating

a rotating anisotropic porous mediuim Spec.Top.ReRorous Media Begell House
Publ2,201153¢64.

Bhadaura, B.S., Agarwal, S., Kumar, oNonlinear twodimensional convection in a

nanofluid saturated porous mediumransp. Porous Medi20(2),2011, 605625.

Nield, D. A. and Bejar, 6Convection in porous Medialthird ed., Springer, New York,

2006.

Kuznetsov, A.V., Avramenko, E.Efféct of small particles on the stability of bioconvection

in a suspension afyrotactic microorganisms in a layer of finite lengtimt. Commun. Heat

Mass Transfer 32004, 110.

Buongiorno, J. and HL.W, dbl y2Ff dZAR [/ 22t yia FT2NJé& RGOl yO-
t FLISNI ptnpZ tNRPOSSRAY3IE1RY. L/ !'tt QnpX {S2dzZ =
Agawal, S., Bhadauria, B. S., Sacheti,Q\. Chandran, P., Singh, A. #Nonlinear

Convective transport in a binary nanofluid saturated porous Ey#Eransp Porous Media

93, 2012 2949.

89 International Journal of Engineering, Science and Matheme

http://www.ijesm.co.inEmail: ijesmj@gmail.com




