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ABSTRACT 

 In the recent years several researchers proposed and studied beta operators in approximation theory. In the 
present paper, we establish an error estimation formula for modified beta operators in linear simultaneous 
approximation. To prove our result, we have used the technique of linear approximating method, namely, Steklov 
mean .  
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1. Introduction   
 
Motivated by the integral modification of Bernstein polynomials by Durrmeyer [3], several researchers 

have proposed and studied the different family of mixed summation -integral type operators [1, 4, 6, 7, 10, 
11, 15, 16]. In 2006, Gupta [8] studied error estimation formula for summation integral type operators. In 
the present paper we study an error estimation formula in simultaneous approximation for the linear 
combinations of the operators introduced by Gupta et al. [9]. The modified beta operators introduced by 
Gupta et al. [9] are defined as  
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and )!/(!)!1()1,( vnnvnv   the Beta function. 

It is easily checked that the operators defined by (1.1) are linear positive operators and it is obvious 

that 1),1( xBn .Also it is observed that the order of approximation by operators (1.1) is, at best O(n-1), 

howsoever smooth the function may be. Thus, to improve the order of approximation we may consider 
some combinations of the operators (1.1).One approach to improve the order of approximation is the 
iterative combinations due to Micchelli [13], who improved the order of approximation of Bernstein 
polynomials. However, we cannot apply this approach to the operators (1.1) because for these operators 

(1.1), we not have 0),(  xxtBn , which is essential property for making iterative combinations. Yet 

another approach for improving the order of approximation is the technique of linear combinations which 
was first considered by May [12] to improve the order of approximation for exponential type operators. In 
the present paper, we use the later approach, which described as: 

Let d0, d1, d2… dk be (k+1) arbitrary but fixed distinct positive integers. Then the linear combination

),,( xkfBn of ),( xfB nd j
 , j = 0, 1, 2…n is defined as 
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(1.2) 
 

where                            
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The above expression (1.2) after simplification may be written as 
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    and C(0,0)=1. 

 

Some basic properties of  )(, xb vn  are as follows 
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(1.8) 
 

where Nn  and ),0[ x . 
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Throughout this paper, we may assume that  1322310 bbbaaa  and 

],[ iii baI  where i =1, 2, 3. 

Let ),0[ H be the class of all measurable functions defined on ),0[  satisfying  
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    for some positive integer n. 

Obviously the class ),0[ H is bigger than the class of all lebesgue integrable functions on ),0[  . 

Therefore the operators (1.1) may be applicable for studying a larger class. 
 The main object of the present paper is to establish an error estimation formula in terms of modulus of 

continuity [2, 5] in simultaneous approximation for linear combinations of the operators (1.1). 
 

 
2. PRELIMINARY RESULTS 

 
To prove our main results, we shall require the following auxiliary results: 
 

Lemma 2.1. For 
0Nm (the set of non-negative integers) and n>m, let the function )(, xmn be 

defined as 
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   , and there holds the recurrence relation 
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 Moreover, we have the following consequences about )(, xmn : 

(i). )(, xmn  is a polynomial in x of degree m, 

(ii). for every  ]2/)1[(

, )(,),0[  m

mn nOxx   

where [ ] denotes the integral part of  . 
Consequently, on using Holder’s inequality, we have from this recurrence relation that 

     2/rr
,  nOxxtBn  for each r >0 and for every fixed ),0[ x  .                

Proof. Since  xxtBx m

nmn ,)()(,  , therefore, using linearity property, we have 

  1),1(,)()( 0

0,  xBxxtBx nnn      and 

 
n

x
xxBxtBxxtBx nnnn

21
),1(),(),()(1,


  

To prove the recurrence relation we shall make the use of the following identity  
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Thus, we get the required recurrence relation 
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The other consequences follow easily from the above recurrence relation. 
 
 

Lemma 2.2. For Nm and sufficiently large Nn , there holds the following recurrence relation  
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where ),,( xkmQ  is a certain polynomial in x of degree m and ),0[ x is arbitrary but fixed. 
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  , for each fixed ),0[ x . 

This completes the proof of the Lemma 2.2. 

Lemma 2.3.  For 
0Nm , if the mth order moment for the operators (1.1) be defined as 
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This completes the proof of the recurrence relation. 
The other consequence follows easily from the recurrence relation. 

  

Lemma 2.4([14]). There exist the polynomials )x(Q r,j,i  independent of   n and v such that 
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where rD  is the rth order differentiation operator.   
 

Lemma 2.5. If C( j, k ) ,  j = 0, 1, 2, …, k are defined as in (1.3), then we have  
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Proof. From relations (1.2) and (1.3) we get  
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Lemma 2.6. For
0Nq,p  , we have   
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Proof. Using Schwarz inequality for integration and then summation, Lemma 2.1 and Lemma 2.3, we 
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3. ERROR ESTIMATION FORMULA 

 
Now we begin to prove the main results of this section, namely, error estimation formula.  
 

Theorem: Let 221  kp , Nr and the function ),0[ Hf be bounded on every finite 

subinterval of ),0[  , satisfying )()( tOtf  as t  for some 0 . If 
)r( pf  exists and is 

continuous on ),0(),(  ba where 0 , having the modulus of continuity )()r(  pf
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where   ),,(11 rpkCC      and     ),,,(22 frpkCC  . 

Proof. Let )(t be the characteristic function of the interval ),(  ba . Since 
)r( pf exists, 

therefore, for ),0[ t and ],[ bax , we can write 
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Using linearity of ),,()r( xkBn  , relation (1.3) and the above expansion of  f (t), we have 
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where q is a positive integer greater than s/2. 
 Consequently, using Lemma 2.5, we obtain 
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 Finally, collecting the estimates of E1, E2 and E3, we get the required result. 
 This completes the proof of the theorem.  
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