ON THE BINARY QUADRATIC DIOPHANTINE EQUATION

$$
x^{2}-3 x y+y^{2}+10 x=0
$$

M.A.Gopalan ${ }^{*}$

S.Vidhyalakshmi*

R.Presenna**

K.Lakshmi**

Abstract

: them.

Keywords : Binary quadratic equation, Integral solutions.

The binary quadratic equation $x^{2}-3 x y+y^{2}+10 x=0$ represents a hyperbola. In this paper we obtain a sequence of its integral solutions and present a few interesting relations among

MSC subject classification: 11D09.

[^0]
INTRODUCTION

The binary quadratic Diophantine equations (both homogeneous and non homogeneous) are rich in variety $[-6$. In $7-16$ the binary quadratic non-homogeneous equations representing hyperbolas respectively are studied for their non-zero integral solutions. These results have motivated us to search for infinitely many non-zero integral solutions of an another interesting binary quadratic equation given by $x^{2}-3 x y+y^{2}+10 x=0$. The recurrence relations satisfied by the solutions x and y are given. Also a few interesting properties among the solutions are exhibited.

METHOD OF ANALYSIS:

The Diophantine equation representing the binary quadratic equation to be solved for its non-zero distinct integral solution is

$$
\begin{equation*}
x^{2}-3 x y+y^{2}+10 x=0 \tag{1}
\end{equation*}
$$

Note that (1) is satisfied by the following non-zero distinct integer pairs $(-2,2),(10,10),(40,20),(-90,-30),(-32,-8)$.

However, we have other patterns of solutions for (1), which are
illustrated below:

PATTERN:1

Solving (1) for x , we've

$$
\begin{equation*}
x=\frac{3 y-10 \pm \sqrt{5 y^{2}-60 y+100}}{2} \tag{2}
\end{equation*}
$$

Let

$$
5 y^{2}-60 y+100=\alpha^{2}
$$

which is written as, $\quad(5 y-30)^{2}=5 \alpha^{2}+400$

$$
\begin{equation*}
\Rightarrow Y^{2}=5 \alpha^{2}+20^{2} \tag{3}
\end{equation*}
$$

where $\quad Y=5 y-30$

The least positive integer solution of (3) is

$$
\alpha_{0}=10, Y_{0}=30
$$

Now to find the other solution of (3), consider the pellian equation

$$
\begin{equation*}
Y^{2}=5 \alpha^{2}+1 \tag{5}
\end{equation*}
$$

whose fundamental solution is $\left(\tilde{\alpha}_{0}, \tilde{Y}_{0}\right)=(4,9)$.

The other solutions of (5) can be derived from the relations

$$
\tilde{Y}_{n}=\frac{f_{n}}{2} \quad \alpha_{n}=\frac{g_{n}}{2 \sqrt{5}}
$$

where

$$
\begin{aligned}
& f_{n}=\left[(9+4 \sqrt{5})^{n+1}+(9-4 \sqrt{5})^{n+1}\right] \\
& g_{n}=\left[(9+4 \sqrt{5})^{n+1}-(9-4 \sqrt{5})^{n+1}\right] \quad, \mathrm{n}=-1,0,1,2 \ldots \ldots
\end{aligned}
$$

Applying the lemma of Brahmagupta between $\left(\alpha_{0}, Y_{0}\right)$ and $\left(\tilde{\alpha}_{n}, \tilde{Y}_{n}\right)$
the other solutions of (3) can be obtained from the relations

$$
\begin{align*}
& \alpha_{n+1}=5 f_{n}+\frac{15 g_{n}}{\sqrt{5}} \\
& Y_{n+1}=15 f_{n}+\frac{25 g_{n}}{\sqrt{5}} \tag{6}
\end{align*}
$$

Taking positive sign on the R.H.S of (2) and using (4) and (6) the non-zero distinct integer
solution of the hyperbola (1) are obtained as follows ,

$$
\begin{align*}
& x_{n+1}=7 f_{n}+3 \sqrt{5} g_{n}+4 \tag{7}\\
& y_{n+1}=3 f_{n}+\sqrt{5} g_{n}+6 \tag{8}
\end{align*}
$$

Some numerical examples are presented as below ,

n	x_{n+1}	y_{n+1}
-1	18	12
0	250	100
1	4418	1692
2	79210	30260
3	1421298	542892
4	25504090	9741700

The recurrence relations satisfied by x_{n+1}, y_{n+1} are respectively

$$
\begin{aligned}
& x_{n+3}-18 x_{n+2}+x_{n+1}=-64 \\
& y_{n+3}-18 y_{n+2}+y_{n+1}=-96
\end{aligned}
$$

PROPERTIES :

- $x_{n+1}+x_{n+2} \equiv 0(\bmod 389)$
- $x_{n+3}+y_{n+2}+x_{n+1} \equiv 0(\bmod 317)$
- $x_{n+1}+y_{n+3}+x_{n+2} \equiv 0(\bmod 16)$
- $y_{n+3}+x_{n+3} \equiv 0(\bmod 30)$

Note : Taking negative sign on the R.H.S of (2), the corresponding values of x are given by

$$
x_{n+1}=4 f_{n}+8
$$

PATTERN:2

Solving (1) for y , we get

$$
\begin{equation*}
y=\frac{\left.3 x \pm \sqrt{9 x^{2}-4\left(x^{2}+10 x\right.}\right)}{2} \tag{9}
\end{equation*}
$$

Replacing x by 2 X in the above equation, we have

$$
\begin{equation*}
y=3 x \pm \sqrt{5 X^{2}-20 X} \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
\text { Let } 5 X^{2}-20 X=\beta^{2} \tag{12}
\end{equation*}
$$

which is be written as

$$
\begin{equation*}
\left(X-10^{2}\right)=5 \beta^{2}+10 \tag{13}
\end{equation*}
$$

and (11) becomes $y=3 X \pm \beta$
$\Rightarrow S^{2}=5 \beta^{2}+10^{2}$
where $S=5 \mathrm{X}-10$

Now, consider the pellian equation of (15)

$$
\begin{equation*}
S^{2}=5 \beta^{2}+1 \tag{16}
\end{equation*}
$$

whose least positive integer solutions are $\widetilde{\beta}_{0}=4, \widetilde{S}_{0}=9$

The general solution $\boldsymbol{\beta}_{n}, \widetilde{\boldsymbol{\beta}}_{n}$, of (16) is given by,

$$
\begin{align*}
& \widetilde{S}_{n}=\frac{1}{2}(9+4 \sqrt{5})^{n+1}+(9-4 \sqrt{5})^{n+1} \tag{17}\\
& \widetilde{\beta}_{n}=\frac{1}{2 \sqrt{5}}(9+4 \sqrt{5})^{n+1}-(9-4 \sqrt{5})^{n+1} \tag{18}
\end{align*}
$$

where $\mathrm{n}=0,1,2 \ldots \ldots$

Thus the general solutions of (15) are obtained by

$$
\begin{align*}
& S_{n}=10 \widetilde{S}_{n}=\frac{10}{2}[9+4 \sqrt{5})^{n+1}+(9-4 \sqrt{5})^{n+1} \tag{19}\\
& \beta_{n}=10 \widetilde{\beta}_{n}=\frac{10}{2 \sqrt{5}}(9+4 \sqrt{5})^{n+1}-(9-4 \sqrt{5})^{n+1} \tag{20}
\end{align*}
$$

where $n=0,1,2 \ldots$.
From (10), (15a) and (17) we've

$$
\begin{equation*}
x_{n}=4\left[\frac{f}{2}+1\right] \tag{21}
\end{equation*}
$$

where,

$$
f=\left[(9+4 \sqrt{5})^{n+1}+(9-4 \sqrt{5})^{n+1}\right]
$$

From (10) ,(14) and (18) we've

$$
\begin{equation*}
y_{n}=6\left[\frac{f}{2}+1\right]+10\left[\frac{g}{2 \sqrt{5}}\right],(\text { by taking the positive sign of }(11)) \tag{22}
\end{equation*}
$$

where

$$
g=\left[(9+4 \sqrt{5})^{n+1}-(9-4 \sqrt{5})^{n+1}\right]
$$

Our aim is to get integer solution to (1) which is obtained for $\mathrm{n}=0,2,4 \ldots$
in (21) and (22)

$$
\begin{align*}
& x_{2 n}=4\left[\frac{F}{2}+1\right] \tag{23}\\
& y_{2 n}=6\left[\frac{F}{2}+1\right]+10\left[\frac{G}{2 \sqrt{5}}\right] \tag{24}
\end{align*}
$$

Where

$$
\begin{align*}
& F=\left[(9+4 \sqrt{5})^{n+1}+(9-4 \sqrt{5})^{n+1}\right] \tag{25}\\
& G=\left[(9+4 \sqrt{5})^{n+1}-(9-4 \sqrt{5})^{n+1}\right] \tag{26}
\end{align*}
$$

Equations (23) and (24) together will give the distinct integral solutions of (1).

$$
\begin{align*}
& x_{2 n+2}=4\left[\frac{9 F+4 \sqrt{5} G}{2}+1\right] \tag{27}\\
& x_{2 n+4}=4\left[\frac{2889 F+1292 \sqrt{5} G}{2}+1\right] \tag{28}\\
& y_{2 n+2}=6\left[\frac{9 F+4 \sqrt{5} G}{2}+1\right]+10\left[\frac{9 G+4 \sqrt{5} F}{2 \sqrt{5}}\right] \tag{29}\\
& y_{2 n+4}=6\left[\frac{2889 F+1292 \sqrt{5} G}{2}+1\right]+10\left[\frac{2889 G+1292 \sqrt{5} F}{2 \sqrt{5}}\right] \tag{30}
\end{align*}
$$

The above values of $x_{2 n}$ and $y_{2 n}$ satisfy the following recurrence relations.

$$
\begin{align*}
& x_{2 n+4}-323 x_{2 n+2}+18 x_{2 n}=-1216 \tag{31}\\
& y_{2 n+4}-323 y_{2 n+2}+18 y_{2 n}=-1824 \tag{32}
\end{align*}
$$

We give some the numerical values for $\mathrm{n}=0,1,2 \ldots$ in $x_{2 n}$ and $y_{2 n}$

n	$x_{2 n}$	$y_{2 n}$
-1	8	12
0	40	100
1	11560	30260
2	3721000	9741700
3	1201673704	31462022596

PROPERTIES :

$$
\begin{aligned}
& \rightarrow y_{2 n}-x_{2 n} \equiv 0(\bmod 24) \\
& \rightarrow y_{n}-x_{n} \equiv 0(\bmod 24) \\
& \rightarrow x_{2 n+2}+y_{2 n+2} \equiv 0(\bmod 20) \\
& \rightarrow x_{2 n+2}+y_{2 n+4} \equiv 0(\bmod 30) \\
& \rightarrow x_{2 n+2}+y_{2 n+2}+y_{2 n+4}=0(\bmod 12)
\end{aligned}
$$

CONCLUSION:

In this paper, we have made an attempt to obtain a complete set of non-trivial distinct solutions for the non-homogeneous binary quadratic equation. To conclude, one may search for other choices of solutions to the considered binary equation and further, quadratic equations with multi-variables.

Acknowledgement:

The financial support from the UGC, New Delhi (F.MRP-5122/14 (SERO/UGC) dated March 2014) for a part of this work is gratefully acknowledged.

References

[1]. Banumathy.T.S., (1995)A Modern Introduction to Ancient Indian Mathematics,Wiley
Eastern Limited, London.
[2]. Carmichael, R.D., (1950)The Theory of Numbers and Diophantine Analysis, Dover Publications, New York.
[3]. Dickson. L. E., (1952)History of The Theory of Numbers, Vol.II, Chelsia Publicating Co, New York.
[4]. Gopalan,M.A., and Parvathy,G., (2010 a) "Integral Points On The Hyperbola $x^{2}+4 x y+y^{2}-2 x-10 y+24=0$, "Antarctica J.Math,Vol 1(2),149-155.
[5]. Gopalan,M .A et al ,Sep (2010 b)"Integral Pionts
On The Hyperbola $x^{2}+6 x y+y^{2}+40 x+8 y+40=0 "$, Bessel J.Math. Vol 2(3),159-164.
[6]. Gopalan,M.A. et al, (2007 a) " On the Diophantine
Equation $x^{2}+4 x y+y^{2}-2 x+2 y-6=0$
, ActaCienciaIndica, Vol.XXXIIIM No2, p. 567-570
[7]. Gopalan,M.A. et al, (2007 b)On The Diophantine Equation $3 x^{2}+x y=14$, Acta CienciaIndica,Vol.XXXIII M.No2,P.645-646.
[8].Gopalan.M.A., and Janaki.G., (2008 a) "Observations on $x^{2}-y^{2}+x+y+x y=2$ ", ImpactJ.Sci.,Tech, Vol2(3)p.14, 3-148.
[9].Gopalan.M.A., et al (2008 b) "On Binary Quadratic Equation
$x^{2}-5 x y+y^{2}+8 x-20 y+15=0 "$, Acta Ciencia Indica,Vol. XXXIVM. No.4,p.1803-1805c.
[10]. Gopalan,M.A et al, (2012) " Observation on $3 x^{2}+10 x y+4 y^{2}-4 x+2 y-7=0$ ",
Diophantus J.Maths.Vol.1(2), 123-125.
[11] Mollion,R.A, (1998) "All Solutions of the Diophatine Equations $X^{2}-D Y^{2}=n$ "
Far EastJ,Math.Sci., Speical Volume,Part III,p.257-293.
[12]. Mordell,L,J., (1969)Diophantine Equations, Acadamic Press,London.
[13]. Nigel,P.Smart., (1999)TheAlgorithm Resolutions of Diaphantine eqations,Cambridge University, Press, London.
[14]. Telang ,S.G., (1996) Number theory, Tata Mc Graw-Hill Publishing Company , NewDelhi.
[15].Vidhyalakahmi.S et al, (2014) " Observation On The Binary
Quadratic Equation $3 x^{2}-8 x y+3 y^{2}+2 x+2 y+6=0$ ", Scholar Journal of Physics,
Mathematics and Statistics, Vol.1(2), (Sep-Nov), 41-45.
[16].Vidhyalakahmi. S, Gopalan,M.A and Lakshmi.K, August(2014) "Integer Solution of the Binary Quadratic Equation $x^{2}-5 x y+y^{2}+33 x=0$ ", International Journal of Innovative Science Engineering \&Technology, Vol.1(6), 450-453.

[^0]: * Professor, Department of Mathematics, SIGC, Trichy-620002, Tamilnadu,
 ${ }^{* *}$ M.Phil Scholar, Department of Mathematics,SIGC,Trichy-620002,Tamilnadu

