
 IJESM Volume 3, Issue 4 ISSN: 2320-0294

A Quarterly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Engineering, Science and Mathematics
http://www.ijmra.us

 178

December
2014

Virtual Machine Monitors Improve

Your Cloud Performance

C.Titus
*

S.Aparna
**

Abstract-

Cloud computing is quickly becoming the platform of choice for many web services.

Virtualization is the key underlying technology enabling cloud providers to host services for a

large number of customers.Effective resource management for shared storage systems is

challenging, even in research systems with complete end-to-end control over all system

components.We evaluate the effectiveness of our implementation using quantitative experiments,

demonstrating that this approach is practical.In this paper, we presented a novel I/O workload

based performance attack which uses a carefully designed workload to incur significant delay on

a targeted application running in a separate VM but on the same physical system. Such a

performance attack poses an especially serious threat to data-intensive applications which require

a large number of I/O requests.Hence, no hypervisor is needed to allocate resources dynamically,

emulate I/O devices, support system discovery after boot up, or map interrupts and other

identifiers.

 Keywords—Cloud computing,virtualization,scheduling

* Assistant Professor, Department of Computer Science and Engineering, Mahendra College of

Engineering, Minnampalli,

Salem – 636106

** PG Scholar, Department of Computer Science and Engineering, Mahendra College of

Engineering, Minnampalli,

Salem – 636106

 IJESM Volume 3, Issue 4 ISSN: 2320-0294

A Quarterly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Engineering, Science and Mathematics
http://www.ijmra.us

 179

December
2014

I. INTRODUCTION

Usually the Cloud is used to transfer the information from one to another by the help of the

proxy server Cloud. In that way in this we transfer the information from on to another easily.

Now-a-days Transfer Information has become very unsecure . The cloud information has been

easily accessed by the hacker. The Hacker can view the personal information of a person without

any authorization. To overcome come this we Implement secure method in this . We use to send

the file in encrypted format but it is not secure to maintain in the cloud to over come this we had

split the file into multiple and save them in the cloud location. In this work, we design and

implement Swiper, a framework that exploits the virtual I/O vulnerability in three phases: 1) co-

location (“sneaking-up”): place the adversary VM on the same physical machine as the victim

VM; 2) synchronization (“getting-ready”): identify whether the targeted application is running on

the victim VM and, if so, the state of execution for the targeted application

(which we shall elaborate below); and 3) exploiting (“swiping”): design an adversarial workload

according to the state of the victim application, and launch the workload to delay the victim.

The main contribution of this paper are listed as follows :

 • An I/O-based co-location detection technique and verified its effectiveness on public

clouds.

 • A discrete Fourier transformation (DFT) based algorithm which recovers the victim’s

original I/O pattern from the observed (distorted) time-series of I/O throughout, and then

determines if the victim application has reached a pre-determined point when it is most

vulnerable to an exploitation.

 • Discover patterns which cause maximum interference.

 • A theoretical framework to observe and synchronize with predefined I/O patterns.

• A comprehensive set of experiments on Amazon EC2 - with the results clearly showing that

Swiper is capable of degrading various server applications by 22.54% on average (and up to

31%) for different instance types and benchmarks, while keeping the resource consumption to a

minimum.

 According to this paper it mainly introduces the system and threat models in sec. 2.It

presents I/O-based co-location detection method in sec. 3.In sec.4 it describes our approach,and

 IJESM Volume 3, Issue 4 ISSN: 2320-0294

A Quarterly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Engineering, Science and Mathematics
http://www.ijmra.us

 180

December
2014

explains the synchronization and exploiting stages.Sec.5 discusses issues in practicing

Swiper.Sec.6 presents the experiment and results.we conclude in sec.7

II. THREAT MODEL

 In general, a cloud computing system provides its endusers with a pool of virtualized computing

and I/O resources supported by a large amount of distributed, heterogeneous,commodity

computers. For example, Amazon EC2 is using Xen virtualization, whose architecture and

terminology are described in Appendix A.For I/Os, VMs utilize the device drivers (the frontend

drivers) in the guest OS to communicate with the backend drivers in DOM0, which access the

physical devices, e.g., hard drives and networks, on behalf of each VM.In other words,

application I/Os within a VM – which basically consist of block reads and writes to the virtual

disks - are translated by the virtualization layer to system calls in the host OS, such as requests to

the physical disks. In Xen, the hypervisor and DOM0 work together to ensure security isolation

and performance fairness among all VMs. While fairness in CPU and memory virtualization is

relatively easy to achieve, in this paper we show that maintaining performance isolation for

virtual I/O can be extremely challenging - which opens doors for security threats.In this work,

we also evaluate our framework on KVM (Kernel-based Virtual Machine) that utilizes hardware

assisted full virtualization instead of Xen’s paravirtualization.Although Xen and KVM are used

to demonstrate this threat in our work, our test and previous work indicate that other

virtualization framework like VMware also exhibits similar interference problem [21].

provided, and in [4], a scalable distributed media transcoding system that can reduce the

transcoding time is presented. In queue waiting time of transcoding servers is used to make an

admission control for video streams and job dispatching for video transcoding to prevent jitters.

In virtual machine provision for video transcoding, is considered as the cost-efficient. In [5],

mechanisms for allocation and reallocation of virtual machines and video transcoding servers are

provided.

 IJESM Volume 3, Issue 4 ISSN: 2320-0294

A Quarterly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Engineering, Science and Mathematics
http://www.ijmra.us

 181

December
2014

III. PROBLEM DEFINITION

A straightforward way to delay a victim process is to launch an attacking process which

constantly requests a large amount of resources shared with the victim (e.g., I/O bandwidth).

Nonetheless, such an attack can be easily detected and countered (e.g., a dynamic resource

allocation algorithm can restrict the amount of resourcesobtained by each process). Thus, our

focus in this paper is to incur the maximum delay to the victim while maintaining the resource

request from the attacker to a pre-determined (low) threshold.

Prior Knowledge of the Adversary:

 Since the adversary now has to target the attack specifically to the victim process (instead

of blindly delaying all processes sharing the resource), it has to possess certain characteristics of

the victim process which distinguishes it from others. For the purpose of this paper, we consider

the case where the adversary holds the trace of resource requests from the victim process as the

“fingerprint” of the victim.

 Research on cross-VM side channels can be used to sustain this assumption [22]–[25] -

malicious VMs are able to retrieve a variety of information, such as data and instruction caches,

I/O usage profile, and even private keys, from co-located VMs and hosts via side channels.The

techniques for co-location detection in Sec. 3 can also be adapted to profile I/O access patterns as

well. We plan to extend the profiling technique as future work. In the experiment section, we

shall demonstrate that the various workloads we tested all exhibit unique resourcerequest time-

series that can be easily distinguished from others.

Limits on the Adversary:

 Many cloud computing systems charge by the amount of resource requests. For example,

Amazon Elastic Block Store (EBS) charges $0.1 - $0.11 per 1 million I/O requests and Amazon

EC2, on the other hand, charges by total network consumption - i.e., the amount of data

transferred in and out of the system [26]. Thus, the adversary must minimize the amount of

resource request initiated by itself. In this paper, we consider a pre-determined upper bound on

the total resource consumption by the adversary.

 IJESM Volume 3, Issue 4 ISSN: 2320-0294

A Quarterly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Engineering, Science and Mathematics
http://www.ijmra.us

 182

December
2014

Problem Statement:

 Given a workload fingerprint of a victim process, determine an adversarial workload of I/O

request which incurs the maximum delay on the victim process without exceeding the pre-

determined threshold on the adversary’s own resource consumption.

 I/O BASED CO-LOCATION DETECTION

In this work, we use Amazon EC2 as one testing platform to carry out experiments. As we focus

on vulnerability with competition for I/O resources, we choose two types of Amazon EC2

instances, micro and small, to be the experiment instance types. Please refer to Appendix B for

the introduction of Amazon EC2. The co-location detection mainly consists of two stages:

Probing and Locking-on.

Probing:

 An adversary can locate the geographical zone of a victim process by the victim’s IP

information [6]. To conveniently manage separate networks for all availability zones, Amazon

EC2 partitions internal IP address space between availability zones. Administration tasks will be

more difficult if the internal IP address mapping changes frequently. Because different ranges of

internal IP address represent various availability zones and public IP addresses can be mapped to

private IP addresses by DNS, an adversary can easily locate the availability zone of a victim,

thus greatly reduce the number of instances needed before achieving a collocation placement.

 Once an adversary knows the availability zone of avictim, it uses network probing to check

for the coresidence.In general, if an adversary and a victim are co-located, they are likely to have

1) identical DOM0 IP address, and 2) small packet round-trip times (RTT).

 Therefore, an adversary can create several probing instances to perform a TCP SYN

traceroute operation to a victim’s open service port. If one probing instance and the victim were

co-located, they would share the same DOM0 and there would be only a single hop to

 IJESM Volume 3, Issue 4 ISSN: 2320-0294

A Quarterly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Engineering, Science and Mathematics
http://www.ijmra.us

 183

December
2014

the victim with a small RTT. In our experience, if the RTT is smaller than half of the average

RTT of all onehop instances in the same zone, the probing instance is very likely on the same

physical machine as the victim.

Locking-on:

 Co-location on the same physical machine does not necessarily mean the sharing of the I/O

resources - co-located VMs may end up using different storage types. In our tests, if two co-

located VMs do not share one hard drive, launching a workload to compete for I/O resources

shows limited effect on I/O throughput. On the other hand, if two instances share the same

storage device and both try to max out the bandwidth,they can only get part of the total

bandwidth. Prior

works also have shown similar interference effect in virtualized environments [27]–[29].Because

the adversary knows its performance under a given I/O workload, for it to confirm the I/O

sharing,it needs a VM instance that would potentially co-locate with the victim and try to

compete for I/O resources. The adversary then can simply measure the I/O performance and an

obvious performance degradation would be a strong indicator of VM co-location.

 IV. SWIPER FOR A TWO-PARTY SYSTEM

 There are two critical challenges for incurring the maximum delay to a victim-

synchronization and adaptive attack.

 Synchronization:

 In order for the adversary to incur the maximum delay under a resource constraint, it has to be

able to (1) determine whether the victim process is running, and (2) predict the resource request

from the victim process at a given time.

 IJESM Volume 3, Issue 4 ISSN: 2320-0294

A Quarterly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Engineering, Science and Mathematics
http://www.ijmra.us

 184

December
2014

Adaptive Attack:

 Based on the result of synchronization, the adversary should align its resource request (i.e.,

attack) with the victim. In general, the higher demand the victim has at a given time, the larger

request the adversary should submit to the shared resource.

Ideas for synchronization:

In this paper we consider a simple adversarial strategy of conducting an observation process with

a sequential read operation. We chose read over write because the timeseries of throughput

allocated to write operations tend to have sharp bursts, which would make the synchronization

significantly more difficult. Both sequential and random reads in our tests yield similar results in

terms of the accuracy of synchronization. We chose sequential read over random read because

the latter is rarely the behavior of a normal user and therefore may be detected by the cloud

computing system.Before describing the details for synchronization, we first introduce a few

basic notions: Recall that the adversary holds as prior knowledge of the I/O request time series

from the victim (when no other process is

running). Let v(t) be the bandwidth requested by the victim at t seconds after the victim starts

running. At run-time, let tob (seconds) be the length of the observation process (where ob stands

for observation length) and a(t) (t 2 [1, ob]) be the (observed) throughput allocated to the

adversary for the t-th second since the observation process starts. Let aU be the (upper bound on)

throughput for the sequential read operation when no other process is running.The objective of

synchronization is for the adversary to align the pre-known v(t) with the observed timeseries aU

− a(t). In the ideal case, aU − a(t) would be a concatenation of two sub series: one with zero

readings (i.e., when the victim has not yet started running or has finished running), and a sub-

sequence of v(t). In practice,however, additive noise and rescaling on both time and throughput

may be applied, leading to a requirement on aligning v(t) with aU−a(t) with offset, stretching,

and scaling factors. Appendix C provides the complete definition of these three factors, and

Appendix D explains our main theory for addressing the challenge of synchronization.

 IJESM Volume 3, Issue 4 ISSN: 2320-0294

A Quarterly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Engineering, Science and Mathematics
http://www.ijmra.us

 185

December
2014

Performance Attack

Based on the result of synchronization, we consider a performance attack which launches

multiple segments of sequential read operations to delay the victim process.Each segment

persists for a fixed, pre-determined,amount of time. In the following, we discuss three critical

issues related to the design of such a performance attack: (1) when should each segment be

launched, (2) how long should each segment persist, and (3) why should each segment use a

sequential read operation.

Positioning of Attack Segments: To incur the maximum delay to the victim process, the attack

segments should be positioned to cover the moments of peak requests from the victim process.

Thus, to position h attack segments each persisting for ` seconds, we use a greedy algorithm

which first locates the `-second interval in v(t) which has not yet been executed and has the

maximum total request, i.e., finds the start of interval tS 2 [ob−to↵,N−1]

such that

and then repeat this process after removing interval [tS, tS + `] from consideration, until all h

intervals are found. Note that there must be tS # ob − to↵ because by the end of the observation

process, the first ob − to↵ seconds of the victim process have already passed and thus cannot be

attacked.

Length of Attack Segments:

Somewhat surprisingly, our experiments (as we shall present in Sec. 6) show that as long as each

attack segment covers a peak of the victim’s request, the length of the attack segment does not

have a significant impact on the delay incurred to the victim process. Intuitively, this is because

the length of the attack which does not overlap with the peaks of victim’s request incurs little

delay to the victim. Nonetheless, this does not mean that the adversary should set each attack

segment to be as short as possible - Instead, it has to take into account the estimation error of

synchronization,and make the attack segment long enough to ensure the coverage of the peaks.

 IJESM Volume 3, Issue 4 ISSN: 2320-0294

A Quarterly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Engineering, Science and Mathematics
http://www.ijmra.us

 186

December
2014

Operations of Attack Segments:

Each attack segment may perform four types of operations: equential read,random read,

sequential write, and random write. We choose the sequential read operation due to the following

reasons.First,we excluded the write operations from consideration for the same reason as that

discussed for the design of the observation process: write perations tend to introduce sharp bursts

on throughput, which makes it difficult to be synchronized with the victim’s peak requests. We

chose sequential read over random read because a random read operation is unlikely to sustain a

high throughput to “compete” with the victim process and delay it.

 One note of caution is that, while each attack segment should erform a sequential read

operation, the adversary must ensure that consecutive (but different) attack segments do not read

sequentially on adjacent blocks.This is because the hard drive or operating system may pre-fetch

the latter blocks while performing the previous attack segment. As a result, the latter attack

segment does not actually incur any I/O to the hard drive,incurring no delay on the victim

process. To address this issue, a simple attack strategy is for each segment to first

randomly choose one from a set of files, and then read the file sequentially.

 Figure 1 shows an example trace when Swiper issues overlapping sequential read operations

to slowdown an co-located FileServer. When comparing Figure 1 with the unaffected trace, we

found Swiper issues most I/O operations when victim issues as well. In addition, victim’s trace

has been obviously distorted to certain degree. We will further analyze the performance

decreases in Sec. 6.

 V. PRACTICAL ISSUES IN RUNNIG SWIPER

We have established a framework to locate and interfere with target VMs, including a theory for

syn chronizing I/O patterns. There are critical issues that need to be addressed when deploying

 IJESM Volume 3, Issue 4 ISSN: 2320-0294

A Quarterly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Engineering, Science and Mathematics
http://www.ijmra.us

 187

December
2014

Swiper in realworld.We explicitly discuss two important factors in this section. First, some

applications’ activities depend on user inputs. Thus, we talk about how to deal with such non-

determinism in Sec. 5.1. Second, migration is an important feature for virtualized systems to

manage resources. Co-locating the target and attacker is critical in the proposed method. Since

the target VM could be migrated thereafter, we discuss migration in Sec. 5.2.

 Non-Deterministic User Behavior

Some applications’ activities, e.g., Twitter andWikipedia,are generated by users. Although one

person may not repeat the same behavior hour after hour and day after day, a recent study on a

Twitter trace revealed that aggregate workload demonstrates much more predicable I/O activities

than single user’s, i.e., similar aggregate I/O activities in one hour may occur at the same hour

tomorrow and next week [30]. A previous analysis on long-term traces from Amazon Web

Services and Google App Engine also found yearly and daily patterns [31].Although historical

traces could help in predicting I/O behaviors, self-learning and adaptivity to new I/O patterns are

still good to have in a fast-changing world. Swiper can be easily extended to deal with

nondeterministic workloads by integrating with a pattern repository and learning module. Figure

2 demonstrates a high level sample architecture of an extended Swiper.

With this extended design, Swiper can adjust various

parameters, e.g. the stretching factor, and capture more patterns to improve its success rate. We

examine Swiper with non-deterministic workloads in Sec. 6.2. Note that designing clustering and

learning methods for Swiper may by itself a new research topic. Thus we leave them as future

works.

 IJESM Volume 3, Issue 4 ISSN: 2320-0294

A Quarterly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Engineering, Science and Mathematics
http://www.ijmra.us

 188

December
2014

 VM Migration

While live migration is a possible method of mitigating the interference from co-located

workloads without service interruption, it does not come without a price.Indeed, previous work

have shown that the performance may be substantially affected during migration [32]–[34]. For

I/O-intensive applications in particular, since data can be stored or cached on high performance

local storage to reduce the access latency, VM migration can be even more costly - lasting

several minutes to hours depending on the size of VM virtual storage that is stored locally.

 Alternatively, a practical method for reducing the migration time is to only migrate the

computing instance (CPU and memory states) and keep VMs virtual disks on networked storage.

For such setting, our experiments in Sec. 6.3 show that it is possible for Swiper to locate and

impede the target VM again. In this case, a critical problem for the adversary is the cost because

now the attacker needs to launch a number of probing VMs to search for the target after the VM

migration. Note that this cost can be minimal in the cases that the adversary already held many

hacked user accounts, which had

happened before - e.g., in [35].

VI. EXPERIMENT RESULTS

Because a substantial portion of Amazon EC2’s address space hosts publicly accessible web

servers [6], we test Swiper with the following popular cloud applications or benchmarks: YCSB

(Yahoo! Cloud Serving Benchmark) is a performance measurement framework for cloud data

serving [36]. YCSB’s core workload C is used to emulate read-intensive applications; Wiki-1

and Wiki- 2 are running Wikibench [37] with real Wikipedia request traces on the first day of

September and October 2007 respectively; Darwin is an open source version of Apple’s

QuickTime media streaming server; FileServer mimics a typical workload on a file system,

which consists of a variety of operations (e.g., create, read, write, delete) on a directory tree;

VideoServer emulates a video server, which actively serves videos to a number of client threads

and uses one thread to write new videos to replace obsolete videos; WebServer mostly performs

read operations on a number of web pages, and appends to a log file. The FileServer,

VideoServer and WebServer belong to the FileBench suite [38]. Micro and small Amazon EC2

instances and a local machine are used as the test platforms in this work. We use technique

described in Sec. 3 to locate Amazon EC2 instances,which dwell in the same storage device. The

 IJESM Volume 3, Issue 4 ISSN: 2320-0294

A Quarterly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Engineering, Science and Mathematics
http://www.ijmra.us

 189

December
2014

tests are repeated for 50 times and the means are reported. To evaluate the effectiveness of an

attack, we define three metrics: 1) the slowdown/decrease in percentage of the victim, S, which

assesses the overall effect of an attack. This can be measured as the runtime in seconds or the

throughput in KB. 2) the victim slowdown divided by the total runtime (in seconds) of the

attacker, SAT ,which determines the impact of the length of an attack. A bigger SAT indicates

that an attacker can infiltrate large damages within a shorter time window. 3) the victim

slowdown divided by the total throughput (in MB) of the attacker, SAC, which evaluates the

effect of the bandwidth consumption of an attacker. A bigger SAC means that an attack is

effective while consuming a smaller amount of bytes.

 Dealing with Non-determinism

This section demonstrates how Swiper works as a pattern detection method with a repository of

collected patterns to cope with user randomness (see Figure 2). The results and analyses indicate

that Swiper could help in accomplishing an automatic attacking framework. As a prototype

implementation, the pattern store consists

of pre-stored 120 one-minute Wikipedia traces which are from 9 to 11 am on the 1st of October,

Monday,2007. Then, we replay a 24-hour trace on the same day to evaluate how Swiper reacts to

the trace. Note the pattern here is the time and amount of bandwidth usage by the target. Since

we do not use any advanced pattern learning module (which by itself may become a separate

research topic), we relax the scaling and stretching factors by 10% to allow Swiper to accept

similar patterns in the 24-hour testing set. If there are more than one matched patterns due to the

relaxation, the one with the least distortion will be selected. When Swiper identifies a known

pattern in a one-minute interval, it will synchronize with and attack the victim during the

remaining time of the matched minute. We limit the data usage of Swiper at 1 GB per matched

minute. The machine setting of this experiment is the same as the two-VM one. In Figure 6, we

first show the matched and attacked minutes at every testing hour during the experiment.This

evaluation essentially shows how many one-minute traces are similar to the I/O patterns in the

repository.The polynomial fit of the matched minutes shows a trend

that similar patterns demonstrate time locality, which supports the findings in [30]. The requests

during the night time (hour 12 to 20) are less frequent and intense and thus less similar to the

stored patterns, which are from day time. Note that Swiper is looking for the

 IJESM Volume 3, Issue 4 ISSN: 2320-0294

A Quarterly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Engineering, Science and Mathematics
http://www.ijmra.us

 190

December
2014

similarity in I/O patterns. The request traces could be accessing different files but the disk could

show similar reading patterns.

Fig. 6: Matched minutes at each testing hour in the one-day test when holding a two-hour traces

in the repository. The dotted line shows a polynomial fit of the observed data points. The dotted

rectangle shows the period for the training set Because the extended Swiper relaxes the matching

criterion and does not hold a full trace, attacking one matched minute does not necessary mean a

correct match and guarantee a significant degradation as before. Therefore, Figure 7 examines

the average throughput decrease per attack at each testing hour. Although the

Fig. 7: The average throughput decrease per attack at each testing hour. The dotted rectangle

shows the period for the training set last 22 hours are not as good as the first two, the results

confirm that a historical trace could still be useful in the future. The throughput degradation

ranges from 2 to 20% and has an overall average of 13.12%. As future work, using clustering

methods to identify and generate patterns may greatly improve the effectiveness of Swiper.

 IJESM Volume 3, Issue 4 ISSN: 2320-0294

A Quarterly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Engineering, Science and Mathematics
http://www.ijmra.us

 191

December
2014

VII CONCLUSION

In this paper, we presented a novel I/O workload based performance attack which uses a

carefully designed workload to incur significant delay on a targeted application running in a

separate VM but on the same physical system. Such a performance attack poses an especially

serious threat to data-intensive applications which require a large number of I/O requests.

Performance degradation directly increases the cost of per workload completed in cloud-

computing systems. Our

experiment results demonstrated the effectiveness of our attack on different types of victim

workloads in realworld systems with various number of VMs. Interested readers may refer to

Appendix I for the literature review and more discussions, where we have proposed a number of

possible solutions to these types of attacks as future work. Also, it would interested to study the

effects of system parameters, e.g., I/O schedulers and buffer sizes, on defending such attack.

REFERENCES

[1] J. Szefer et al., “Eliminating the hypervisor attack surface for a more secure cloud,” in

Proceedings of the 18th ACM conference on Computer and communications security. ACM,

2011, pp. 401–412.

[2] A. Gulati et al., “Parda: proportional allocation of resources for distributed storage access,” in

FAST, 2009.

[3] E. Keller et al., “Nohype: virtualized cloud infrastructure without the virtualization,” in

ISCA, 2010.

[4] D. Ongaro et al., “Scheduling i/o in virtual machine monitors,” in VEE, 2008.

[5] R. Shea et al., “Understanding the impact of denial of service attacks on virtual machines,” in

IWQoS. IEEE Press, 2012, pp. 27:1–27:9.

 [6] J. Liu et al., “High performance vmm-bypass i/o in virtual machines,” in ATEC, 2006

