A NEW FUZZY TOOL TO ANALYZE THE PROBLEMS OF OLD AGE PEOPLE

Ms.Kanimozhiraman*

Dr.A.Praveen Prakash**

Abstract

In this paper, we presents a new fuzzy tool called Trapezoidal Fuzzy Cognitive Maps(TpFCM) to analyze the social problem. Usually in Fuzzy Cognitive Maps (FCMs) we analyze the causes and effects of the relationships among the concepts to model the behavior of any system. But this new model gives the causes and effects of the relationships among the concepts to model behavior with ranking of any system. In our present-day society, where money is the measure of everything, the elderly are looked upon as an economic liability and a social burden. The prospect of loneliness often accompanies the process of aging. Many people get extremely panicky when they become old. In their earlier years, they never paused to think of this inevitability and now they are emotionally ill prepared to accept the fact. They become fearful and depressed. Old age has become a widespread social problem in our time. Improvement in diet, technology, and medicine has increased the longevity of a person.In this paper, we analyze the old age people problem using TpFCM. It is organized as follows: In first, we give the brief introduction to FCMs. Section two gives the basic definitions of FCM. In section three, we derive the definitions for TpFCM and Hidden pattern of the dynamical system. In fourth section, we analyzed the concept of the problem using TpFCM. In final section, we give the conclusion based on our study.

Keywords: Fuzzy Cognitive Maps (FCMs), Unsupervised, Trapezoidal fuzzy numbers, Old age people.

[^0]
1. Introduction

Lotfi A. Zadeh (1965)[10] has introduced a mathematical model called Fuzzy Cognitive Maps (FCMs). After a decade, Political scientist Axelord (1976) used this fuzzy model to study decision making in social and political systems. Then Kosko $(1986,1988,1997)[7,8]$ enhanced the power of cognitive maps considering fuzzy values for the concepts of the cognitive map and fuzzy degrees of interrelationships between concepts. FCMs can successfully represent knowledge and human experience, introduced concepts to represent the essential elements and the cause and effect relationships among the concepts to model the behavior of any system. It is a very convenient, simple and powerful tool, which isused in numerous fields such as social, economical and medical, etc. Usually we analyze the number of attributes as ON-OFF position. The concept of general fuzzy number was introduced by chang and Zadeh [22] in 1972.Since then, many researchers studied the theory of fuzzy number, and achieved fruitful results[23,24]. On the other hand ranking is very important concept, and many methods for ranking have also been studied[25,26]. The ranking of Trapezoidal fuzzy number plays an very important role in linguistic decision making and some other fuzzy application systems. The method Trapezoidal Fuzzy Cognitive Maps(TpFCM) gives the weightage of each and every attribute using which ranking of the attribute is done. Now we provide the basic definitions for FCMs to develop the Trapezoidal Fuzzy Cognitive Maps (TpFCM).

2. Preliminaries

In this section, some concepts and methods used in this paper are briefly introduced.

2.1. Fuzzy set theory

The fuzzy set theory is to deal with the extraction of the primary possible outcome from a multiplicity of information that is expressed in vague and imprecise terms. Fuzzy set theory treats vague data as probability distributions in terms of set memberships. Once determined and defined, sets of memberships in probability distributions can be effectively used in logical reasoning.

2.2. Trapezoidal fuzzy number and the algebraic operations

2.2.1.Trapezoidal fuzzy number

A Trapezoidal fuzzy number A with four parameters $a_{1} \leq a_{2} \leq a_{3} \leq a_{4}$ is denoted as

International Journal of Engineering, Science and Mathematics http://www.ijmra.us

$A=\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$ in the set of real numbers R.

Figure 1: Trapezoidal fuzzy number $\mathrm{A}=\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$
Its membership function can be given by

$$
\mu_{A}(x)= \begin{cases}0 & , x<a_{1} \\ \frac{x-a_{1}}{a_{2}-a_{1}}, & a_{1} \leq x \leq a_{2} \\ 1 & , a_{2} \leq x \leq a_{3} \\ \frac{x-a_{4}}{a_{3}-a_{4}}, & a_{3} \leq x \leq a_{4} \\ 0 & , a_{4}<x\end{cases}
$$

2.2.2. Operation of Trapezoidal fuzzy number

Let $A_{1}=\left(a_{11}, a_{12}, a_{13}, a_{14}\right)$ and $A_{2}=\left(a_{21}, a_{22}, a_{23}, a_{24}\right)$ be two Trapezoidal fuzzy numbers in the set ofreal numbers R. Then, the following are the operations that can be performed on

Trapezoidal fuzzy numbers:
(i) Addition:
$A_{1}+A_{2}=\left(a_{11}+a_{21}, a_{12}+a_{22}, a_{13}+a_{23}, a_{14}+a_{24}\right)$.
(ii) Subtraction:
$A_{1}-A_{2}=\left(a_{11}-a_{21}, a_{12}-a_{22}, a_{13}-a_{23}, a_{14}-a_{24}\right)$.

2.2.3. Degrees of the Trapezoidal fuzzy number[5]

Table 1: The linguistic values of the Trapezoidal fuzzy numbers are

Linguistic term	Linguistic values of Trapezoidal fuzzy number
Very low	$(0.0,0.0,0.0,0.0)$

International Journal of Engineering, Science and Mathematics http://www.ijmra.us

Low	$(0.0,0.1,0.2,0.3)$
Fairly low	$(0.2,0.3,0.4,0.5)$
Fair	$(0.4,0.5,0.6,0.7)$
Fairly high	$(0.6,0.7,0.8,0.9)$
High	$(0.8,0.9,1,1)$
Very high	$(1,1,1,1)$

2.3. Fuzzy Cognitive Maps (FCMs)

FCMs are more applicable when the data in the first place is an unsupervised one. The FCMs work on the opinion of experts. FCMs model the world as a collection of classes and causal relations between classes.

Definition 2.3.1: A FCM is a directed graph with concepts like policies, events, etc. as nodes and causalities as edges. It represents casual relationship between concepts.

Definition 2.3.2: When the nodes of the FCM are fuzzy sets then they are called as fuzzy nodes.

Definition 2.3.3: FCMS with edge weights or causalities from the set $\{-1,0,1\}$ are called simple FCMs.

Definition 2.3.4: The edges e_{ij} take values in the fuzzy casual interval $[-1,1] . \mathrm{e}_{\mathrm{ij}}=0$ indicates no causalities. $\mathrm{e}_{\mathrm{ij}}>0$ indicates causal increase, C_{j} increases as C_{i} increases (or C_{j} decreases as C_{i} decreases). $\mathrm{e}_{\mathrm{ij}}<0$ indicates casual decrease (or negative causality), C_{j} decreases as C_{i} increases (or C_{j} increases as C_{i} decreases). Simple FCMs have edge values in $\{-1,0,1\}$. Then if causalities occur, it occurs to a maximal positive or negative degree. If increase (or decrease) in one concept leads to increase (or decrease) in another, then we give the value 1 . If there exists no relation between the two concepts, the value 0 is given. If increase (or decrease) in one concept leads to decrease (or increase) in another, then we give the value -1 . Thus FCMs are described in this way. Consider the concepts $\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{\mathrm{n}}$ of the FCM . Suppose the directed graph is drawn using edge weight $\mathrm{e}_{\mathrm{ij}} \in\{-1,0,1\}$. The matrix E be defined by $\mathrm{E}=\left(\mathrm{e}_{\mathrm{ij}}\right)$, where e_{ij} is the weight of the directed edge $\mathrm{C}_{\mathrm{i}} \mathrm{C}_{\mathrm{j}}$. E is called the adjacency matrix of the FCM , also known as the connection matrix of the FCM. It is important to note that all matrices associated with a FCM are always square matrices with diagonal entries as zero.

Definition 2.3.5: Let $C_{1}, C_{2}, \ldots, C_{n}$ be the nodes of a FCM. Let $A=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, where $a_{i} \in$ $\{0,1\}$. A is called the instantaneous state vector and it denotes the on-off position of the node at an instant.
$a_{i}=0 \quad$ if a_{i} is off,
$a_{i}=1 \quad$ if a_{i} is on, where $i=1,2, \ldots, n$.

Definition 2.3.6: Let $\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{\mathrm{n}}$ be the nodes of a FCM . Let $\mathrm{C}_{1} \overrightarrow{\mathrm{C}_{2},} \mathrm{C}_{2} \mathrm{C}_{3}, \overrightarrow{\ldots, \mathrm{C}_{i}} \mathrm{C}_{\mathrm{j}}$, be the edges of the FCM
$(i \neq j)$. Then, the edges form a directed cycle. A FCM is said to be cyclic if it possesses a directed cycle. A FCM is said to be acyclic if it does not possess any directed cycle.

Definition 2.3.7: A FCM with cycles is said to have a feedback.

Definition2.3.8: When there is a feedback in a FCM, i.e., when the causal relations flow through a cycle in a revolutionary way, the FCM is called a dynamical system.

Definition2.3.9: Let ${\overrightarrow{C_{1}}}_{2},{\overrightarrow{C_{2}}}_{3}, \ldots, \vec{C}_{\mathrm{i}}$, be a cycle. When C_{i} is switched on and if the causality flows through the edges of a cycle and if it again causes C_{i}, we say that the dynamical system goes round and round. This is true for any node C_{i}, for $\mathrm{i}=1,2, \ldots, \mathrm{n}$. The equilibrium state for this dynamical system is called the hidden pattern.

Definition 2.3.10: If the equilibrium state of a dynamical system is a unique state vector, then it is called a fixed point. Consider a FCM with $\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{\mathrm{n}}$ as nodes. For example, let us start the dynamical system by switching on C_{1}. Let us assume that the FCM settles down with C_{1} and C_{n} i.e., the state vector remains as $(1,0,0, \ldots, 0,1)$. This state vector $(1,0,0, \ldots, 0,1)$ is called the fixed point.

Definition 2.3.11: If the FCM settles down with a state vector repeating in the form $A_{1} \rightarrow A_{2} \rightarrow$ $\ldots \rightarrow \mathrm{A}_{\mathrm{i}} \rightarrow \mathrm{A}_{1}$, then this equilibrium is called limit cycle.

2.4. Method of determining the hidden pattern of FCMs

Let $\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{\mathrm{n}}$ be the nodes of a FCM with feedback. Let E be the associated adjacency matrix. Let us find the hidden pattern when C_{1} is switched on. When an input is given as the vector $\mathrm{A}_{1}=$ $(1,0, \ldots, 0)$, the data should pass through the relation matrix E . This is done by multiplying Ai by the matrix E. Let $A_{i} E=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ with the threshold operation that is by replacing ai by 1 if $a_{i}>k$ and a_{i} by 0 if $a_{i}<k(k$ is a suitable positive integer). We update the resulting concept; the concept C_{1} is included in the updated vector by making the first coordinate as 1 in the resulting vector. Suppose $\mathrm{A}_{\mathrm{i}} \mathrm{E} \rightarrow \mathrm{A}_{2}$ then consider $\mathrm{A}_{2} \mathrm{E}$ and repeat the same procedure. This procedure is repeated till we get a limit cycle or a fixed point.

3. Proposed $\mathbf{T}_{\mathbf{P}} \mathbf{F C M s}$

TpFCM are more applicable when the data in the first place is an unsupervised one. The TpFCM works on the opinion of four experts. TpFCM models the world as a collection of classes and causal relations between classes. It is a different process when we compare to FCM. Usually the FCM gives only the ON-OFF position. But this TpFCM is more precise and it gives the ranking for the causes of the problem by using the weightage of the attribute, it is the main advantage of this new TpFCM.

3.1. Basic definitions of TpFCM

3.1.1. Definition

When the nodes of the TpFCM are fuzzy sets then they are called as Fuzzy Trapezoidal nodes.

3.1.2. Definition

TpFCMs with edge weights or causalities from the set $\{-1,0,1\}$ are called simple TpFCMs.

3.1.3. Definition

A TpFCM is a directed graph with concepts like policies, events, etc., as nodes and causalities as edges. It represents causal relationships between concepts.

3.1.4. Definition

Consider the nodes/concepts $\mathrm{TpC}_{1}, \mathrm{TpC}_{2}, \ldots, \mathrm{TpC}_{\mathrm{n}}$ of the TpFCM . Suppose the directed graph is drawn using edge weight $\operatorname{Tpe}_{\mathrm{ij}} \in\{-1,0,1\}$. The Trapezoidal matrix M be defined by $\operatorname{Tp}(M)=$ $\left(\mathrm{Tpe}_{\mathrm{ij}}\right)$ where $\mathrm{Tpe}_{\mathrm{ij}}$ is the Trapezoidal weight of the directed edge $\mathrm{TpC}_{\mathrm{i}} \mathrm{TpC}_{\mathrm{j}} . \mathrm{Tp}(\mathrm{M})$ is called the adjacency matrix of TpFCMs , also known as the connection matrix of the TpFCM . It is important to note that all matrices associated with a TpFCM are always square matrices with diagonal entries as zero.

3.1.5. Definition

Let $\mathrm{TpC}_{1}, \mathrm{TpC}_{2}, \ldots, \mathrm{TpC}_{\mathrm{n}}$ be the nodes of a TpFCM. $\mathrm{A}=\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{\mathrm{n}}\right)$ where $\mathrm{Tpe}_{\mathrm{ij}} \in\{-1,0,1\} . \mathrm{A}$ is called the instantaneous state vector and it denotes the on-off position of the node at an instant.

Instantaneous vector $=\left\{\begin{array}{l}T p a_{i}=1, \text { Maximum }(\text { Weight }) \\ T p a_{i}=0, \text { Otherwise }\end{array}\right.$
Definition 3.1.6: Let $\mathrm{TpC}_{1}, \mathrm{TpC}_{2}, \ldots, \mathrm{TpC}_{n}$ be the nodes of a TpFCM . Let $\mathrm{Tp}_{\mathrm{C}_{1} \mathrm{TpC}_{2}}$, $\mathrm{TpC}_{2} \mathrm{TpC}_{3}, \ldots, \mathrm{TpC}_{\mathrm{i}} \mathrm{TpC}_{\mathrm{j}}$, be the edges of the $\mathrm{TpFCM}(\mathrm{i} \neq \mathrm{j})$. Then, the edges form a directed cycle. A TpFCM is said to be cyclic if it possesses a directed cycle. A TpFCM is said to be acyclic if it does not possess any directed cycle.

Definition 3.1.7: A TpFCM with cycles is said to have a feedback.

Definition3.1.8: When there is a feedback in a TpFCM, i.e., when the causal relations flow through a cycle in a revolutionary way, the TpFCM is called a dynamical system.
 and if the causality flows through the edges of a cycle and if it again causes $\mathrm{TpC}_{\mathrm{i}}$, we say that the dynamical system goes round and round. This is true for any node $\mathrm{TpC}_{\mathrm{i}}$, for $\mathrm{i}=1,2, \ldots$, n . The equilibrium state for this dynamical system is called the hidden pattern.

Definition 3.1.10: If the equilibrium state of a dynamical system is a unique state vector, then it is called a fixed point. Consider a TpFCM with $\mathrm{TpC}_{1}, \mathrm{TpC}_{2}, \ldots, \mathrm{TpC}_{\mathrm{n}}$ as nodes. For example let us start the dynamical system by switching on TpC_{1}. Let us assume that the TpFCM settles down with TpC_{1} and $\mathrm{TpC}_{\mathrm{n}}$ i.e., the state vector remains as $(1,0,0, \ldots, 0,1)$. This state vector $(1,0,0, \ldots, 0,1)$ is called the fixed point.

Definition 3.1.11: If the TpFCM settles down with a state vector repeating in the form $\mathrm{A}_{1} \rightarrow \mathrm{~A}_{2}$ $\rightarrow \ldots \rightarrow \mathrm{A}_{\mathrm{i}} \rightarrow \mathrm{A}_{1}$, then this equilibrium is called limit cycle.

3.2. Method of determining the hidden pattern ofTpFCMs

Step 1: Let $\mathrm{TpC}_{1}, \mathrm{TpC}_{2}, \ldots, \mathrm{TpC}_{\mathrm{n}}$ be the nodes of a TpFCM with feedback. Let $\mathrm{Tp}(\mathrm{M})$ be the associated adjacency matrix.

Step 2: Let us find the hidden pattern when TpC_{1} is switched ON . When an input is given as the vectorA ${ }_{1}=(1,0, \ldots, 0)$, the data should pass through the relation matrix M . This is done by multiplying A_{i} by the trapezoidal matrix M .

Step 3: Let $A_{i} T p(M)=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is a Trapezoidal vector. Suppose $A_{1} T p(M)=(1,0, \ldots, 0)$ gives a Trapezoidal weight of the attributes, we call it as $\mathrm{A}_{\mathrm{i}} \mathrm{Tp}(\mathrm{M})_{\text {weight }}$.

Step 4: Taking average of the corresponding node of the four experts opinion, we call it as $\mathrm{A}_{\mathrm{i}} \mathrm{Tp}(\mathrm{M})_{\text {Average }}$.

Step 5: The threshold operation is denoted by (\neg) i.e., $\mathrm{A}_{1} \mathrm{Tp}(\mathrm{M})_{\text {Max(weight) }}$. That is by replacing a_{i} by 1 if a_{i} is the maximum weight of the Trapezoidal node (i.e., $a i=1$), otherwise by 0 (i.e., ai=0).

Step 6: Suppose $A_{1} T p(M) \rightarrow A_{2}$ then consider $A_{2} T p(M)_{\text {weight }}$ is nothing but addition of weightage of the ON attribute and $\mathrm{A}_{1} \mathrm{Tp}(\mathrm{M})_{\text {weight }}$.

Step 7: Find $\mathrm{A}_{2} \mathrm{Tp}(\mathrm{M})_{\text {Average }}$ (i.e., Taking average of the four experts opinion of each attributes).
Step 8: The threshold operation is denoted by (\neg) i.e., $A_{2} \operatorname{Tp}(\mathrm{M})_{\mathrm{Max}(\text { weight })}$. That is by replacing ai by 1 if a_{i} is the maximum weight of the Trapezoidal node (i.e., ai=1), otherwise by 0 (i.e., $a \mathrm{a}=0$).

Step 9: If $A_{1} \operatorname{Tp}(M)_{\text {Max(weight })}=A_{2} T p(M)_{\text {Max(weight })}$ then it is dynamical system end otherwise repeat the same procedure.

Step 10: This procedure is repeated till we get a limit cycle or a fixed point.

4. Concept of the problem

We have taken the following 10 concepts $\left\{\mathrm{TpC}_{1}, \mathrm{TpC}_{2}, \ldots, \mathrm{TpC}_{10}\right\}$ to analyze of the major problem of the old age people using linguistic questionnaire and the expert's opinion. The following concepts are taken as the main nodes of our problem.
TpC_{1}-Neglected
TpC_{2} - Treating as Burden
TpC_{3}-Forced to sell their property
TpC_{4} - Lack of care
TpC_{5}-Abandaned
TpC_{6} - Lack of reason to live

Volume 3, Issue 3

ISSN: 2320-0294

TpC_{7}-Depression
TpC_{8}-Isolation
TpC_{9}-Lack of emotional support
TpC_{10}-Lack of economical support

Now we give the connection matrix related with the FCM.
Table 2 : Connection matrix

		Tp C_{1}	$T p C_{2}$	$T p C_{3}$	$T p C_{4}$	$T p C_{5}$	Tp C_{6}	$T p C_{7}$	$T p C_{8}$	Tp C_{9}	$T p C_{10}$
	$T p C_{1}$	$V L$	L	FL	F	VH	VH	H	H	FH	L
	$T p C_{2}$	F	VL	L	FH	VH	H	VH	FH	H	VH
	$T p C_{3}$	L	L	VL	L	H	FH	H	H	$F L$	VH
	$T p C_{4}$	L	L	L	$V L$	H	H	VH	H	VH	$F L$
$\mathrm{Tp}(\mathrm{M})=$	$T p C_{5}$	L	L	L	L	VL	VH	H	H	H	VH
	$T p C_{6}$	L	L	L	$F L$	L	VL	VH	FH	H	$F L$
	$T p C_{7}$	$F L$	L	L	FL	FL	VH	VL	- F	FH	F
	$T p C_{8}$	$F L$	$F L$	L	H	H	FH	VH	VLVL	H	F
	$T p C_{9}$	FL	$F L$	L	VH	H	FL	H	FH	VL	L
	$T p C_{10}$		$F L$	$F L$	L	L	FH	FH	F	L	VL

Table 3 : The linguistic values of the connection matrix

	$T p C_{1}$	$T p C_{2}$	$T p C_{3}$	$T p C_{4}$	$T p C_{5}$
$T p C_{1}$	$(0.0,0.0,0.0,0.0)$	$(0.0,0.1,0.2,0.3)$	$(0.2,0.3,0.4,0.5)$	$(0.4,0.5,0.6,0.7)$	$(1,1,1,1)$
$T p C_{2}$	$(0.4,0.5,0.6,0.7)$	$(0.0,0.0,0.0,0.0)$	$(0.0,0.1,0.2,0.3)$	$(0.6,0.7,0.8,0.9)$	$(1,1,1,1)$
$T p C_{3}$	$(0.0,0.1,0.2,0.3)$	$(0.0,0.1,0.2,0.3)$	$(0.0,0.0,0.0,0.0)$	$(0.0,0.1,0.2,0.3)$	$(0.8,0.9,1,1)$
$T p C_{4}$	$(0.0,0.1,0.2,0.3)$	$(0.0,0.1,0.2,0.3)$	$(0.0,0.1,0.2,0.3)$	$(0.0,0.0,0.0,0.0)$	$(0.8,0.9,1,1)$
$T p C_{5}$	$(0.0,0.1,0.2,0.3)$	$(0.0,0.1,0.2,0.3)$	$(0.0,0.1,0.2,0.3)$	$(0.0,0.1,0.2,0.3)$	$(0.0,0.0,0.0,0.0)$
$T p C_{6}$	$(0.0,0.1,0.2,0.3)$	$(0.0,0.1,0.2,0.3)$	$(0.0,0.1,0.2,0.3)$	$(0.2,0.3,0.4,0.5)$	$(0.0,0.1,0.2,0.3)$
$T p C_{7}$	$(0.2,0.3,0.4,0.5)$	$(0.0,0.1,0.2,0.3)$	$(0.0,0.1,0.2,0.3)$	$(0.2,0.3,0.4,0.5)$	$(0.2,0.3,0.4,0.5)$
$T p C_{8}$	$(0.2,0.3,0.4,0.5)$	$(0.2,0.3,0.4,0.5)$	$(0.0,0.1,0.2,0.3)$	$(0.8,0.9,1,1)$	$(0.8,0.9,1,1)$
$T p C_{9}$	$(0.2,0.3,0.4,0.5)$	$(0.2,0.3,0.4,0.5)$	$(0.0,0.1,0.2,0.3)$	$(1,1,1,1)$	$(0.8,0.9,1,1)$
$T p C_{10}$	$(0.0,0.1,0.2,0.3)$	$(0.2,0.3,0.4,0.5)$	$(0.2,0.3,0.4,0.5)$	$(0.0,0.1,0.2,0.3)$	$(0.0,0.1,0.2,0.3)$

International Journal of Engineering, Science and Mathematics http://www.ijmra.us

Table 3 Continues: The linguistic values of the connection matrix

	$T p C_{6}$	$T p C_{7}$	$T p C_{8}$	$T p C_{9}$	$T p C_{10}$
$T p C_{1}$	$(1,1,1,1)$	$(0.8,0.9,1,1)$	$(0.8,0.9,1,1)$	$(0.6,0.7,0.8,0.9)$	$(0.0,0.1,0.2,0.3)$
$T p C_{2}$	$(0.8,0.9,1,1)$	$(1,1,1,1)$	$(0.6,0.7,0.8,0.9)$	$(0.8,0.9,1,1)$	$(1,1,1,1)$
$T p C_{3}$	$(0.6,0.7,0.8,0.9)$	$(0.8,0.9,1,1)$	$(0.8,0.9,1,1)$	$(0.2,0.3,0.4,0.5)$	$(1,1,1,1)$
$T p C_{4}$	$(0.8,0.9,1,1)$	$(1,1,1,1)$	$(0.8,0.9,1,1)$	$(0.6,0.7,0.8,0.9)$	$(0.2,0.3,0.4,0.5)$
$T p C_{5}$	$(1,1,1,1)$	$(0.8,0.9,1,1)$	$(0.8,0.9,1,1)$	$(0.8,0.9,1,1)$	$(0.8,0.9,1,1)$
$T p C_{6}$	$(0.0,0.0,0.0,0.0)$	$(1,1,1,1)$	$(0.6,0.7,0.8,0.9)$	$(0.8,0.9,1,1)$	$(0.2,0.3,0.4,0.5)$
$T p C_{7}$	$(1,1,1,1)$	$(0.0,0.0,0.0,0.0)$	$(0.4,0.5,0.6,0.7)$	$(0.6,0.7,0.8,0.9)$	$(0.4,0.5,0.6,0.7)$
$T p C_{8}$	$(0.6,0.7,0.8,0.9)$	$(1,1,1,1)$	$(0.0,0.0,0.0,0.0)$	$(0.8,0.9,1,1)$	$(0.4,0.5,0.6,0.7)$
$T p C_{9}$	$(0.2,0.3,0.4,0.5)$	$(0.8,0.9,1,1)$	$(0.6,0.7,0.8,0.9)$	$(0.0,0.0,0.0,0.0)$	$(0.0,0.1,0.2,0.3)$
$T p C_{10}$	$(0.6,0.7,0.8,0.9)$	$(0.6,0.7,0.8,0.9)$	$(0.4,0.5,0.6,0.7)$	$(0.0,0.1,0.2,0.3)$	$(0.0,0.0,0.0,0.0)$

Attribute TpC_{1} is ON :
$\mathrm{A}^{(1)}=\left(\begin{array}{lllllll}1 & 0 & 0 & 0 & 0 & 0 & 0\end{array} 0000\right)$
$\mathrm{A}^{(1)} \mathrm{Tp}(\mathrm{M})_{\text {weight }} \quad=((0.0,0.0,0.0,0.0),(0.0,0.1,0.2,0.3),(0.2,0.3,0.4,0.5),(0.4,0.5,0.6,0.7)$, (1,1,1,1),
$(1,1,1,1),(0.8,0.9,1,1),(0.8,0.9,1,1),(0.6,0.7,0.8,0.9)$,
(0.0,0.1,0.2,0.3))
$\mathrm{A}^{(1)} \mathrm{Tp}(\mathrm{M})_{\text {Average }} \quad=(0,0.15,0.35,0.55,1,1,0.925,0.925,0.75,0.15)$
$\mathrm{A}^{(1)} \mathrm{Tp}(\mathrm{M})_{\text {Max (Weight })} \neg=(0,0,0,0,1,1,0,0,0,0)=\mathrm{A}_{1}{ }^{(1)}$
$\mathrm{A}_{1}{ }^{(1)} \mathrm{Tp}(\mathrm{M})_{\text {Average }} \quad=(0.3,0.3,0.3,0.5,0.15,1,1.925,1.675,1.85,1.275)$
$\mathrm{A}_{1}{ }^{(1)} \mathrm{Tp}(\mathrm{M})_{\text {Max (Weight })} \overbrace{\longrightarrow}=(0,0,0,0,0,0,1,0,0,0)=\mathrm{A}_{2}{ }^{(1)}$
$\mathrm{A}_{2}{ }^{(1)} \mathrm{Tp}(\mathrm{M})_{\text {Average }} \quad=(0.6737,0.2887,0.2887,0.6737,0.6737,1.925,0,1.0587,1.4437$,
1.0587)
$\mathrm{A}_{2}{ }^{(1)} \mathrm{Tp}(\mathrm{M})_{\mathrm{Max}(\text { Weight })} \overbrace{}=(0,0,0,0,0,1,0,0,0,0)=\mathrm{A}_{3}{ }^{(1)}$
$\mathrm{A}_{3}{ }^{(1)} \mathrm{Tp}(\mathrm{M})_{\text {Average }} \quad=(0.2887,0.2887,0.2887,0.6737,0.2887,0.925,1.4437,1.7806$, 0.6737)
$\mathrm{A}_{3}{ }^{(1)} \mathrm{Tp}(\mathrm{M})_{\mathrm{Max}(\text { Weight })} \longrightarrow(0,0,0,0,0,0,1,0,0,0)=\mathrm{A}_{4}{ }^{(1)}$
$\mathrm{A}_{2}{ }^{(1)}=\mathrm{A}_{4}{ }^{(1)}$

Attribute TpC_{2} is ON :

$\mathrm{A}^{(2)}=\left(\begin{array}{llllll}0 & 1 & 0 & 0 & 0 & 0\end{array} 0000\right)$
$\mathrm{A}^{(2)} \mathrm{Tp}(\mathrm{M})_{\text {weight }} \quad=((0.4,0.5,0.6,0.7),(0.0,0.0,0.0,0.0),(0.0,0.1,0.2,0.3),(0.6,0.7,0.8,0.9)$, $(1,1,1,1)$,

$$
\begin{array}{ll}
& (0.8,0.9,1,1),(1,1,1,1),(0.6,0.7,0.8,0.9),(0.8,0.9,1,1),(1,1,1,1)) \\
\mathrm{A}^{(2)} \mathrm{Tp}(\mathrm{M})_{\text {Average }} & =(0.55,0,0.15,0.75,1,0.925,1,0.75,0.925,1) \\
\mathrm{A}^{(2)} \mathrm{Tp}(\mathrm{M})_{\text {Max(weight }} \rightharpoondown= & =(0,0,0,0,1,0,1,0,0,1)=\mathrm{A}_{1}{ }^{(2)} \\
\mathrm{A}_{1}{ }^{(2)} \mathrm{Tp}(\mathrm{M})_{\text {Average }} & =(0.65,0.65,0.65,0.65,0.5,2.75,1.675,2.025,1.825,1.475) \\
\mathrm{A}_{1}{ }^{(2)} \mathrm{Tp}(\mathrm{M})_{\text {Max(weight })} \neg=(0,0,0,0,0,1,0,0,0,0)=\mathrm{A}_{2}^{(2)} \\
\mathrm{A}_{2}^{(2)} \mathrm{Tp}(\mathrm{M})_{\text {Average }} & =(0.4125,0.4125,0.4125,0.9625,0.4125,0,2.75,2.0625, \\
2.5437,0.9625) & \\
\mathrm{A}_{2}^{(2)} \mathrm{Tp}(\mathrm{M})_{\text {Max(weight })} \rightharpoondown=(0,0,0,0,0,0,1,0,0,0)=\mathrm{A}_{3}^{(2)} \\
\mathrm{A}_{3}{ }^{(2)} \mathrm{Tp}(\mathrm{M})_{\text {Average }} & =(0.9625,0.4125,0.4125,0.9625,0.9625,2.75,0,1.5125,2.0625, \\
1.5125) & \\
\mathrm{A}_{3}{ }^{(2)} \mathrm{Tp}(\mathrm{M})_{\text {Max(weight })} \longrightarrow & =(0,0,0,0,0,1,0,0,0,0)=\mathrm{A}_{4}{ }^{(2)} \\
\mathrm{A}_{2}{ }^{(2)}=\mathrm{A}_{4}{ }^{(2)} &
\end{array}
$$

Attribute TpC_{3} is ON :

$$
\begin{aligned}
& A^{(3)}=\left(\begin{array}{lllllll}
0 & 0 & 1 & 0 & 0 & 0 & 0
\end{array} 0000\right) \\
& \mathrm{A}^{(3)} \mathrm{Tp}(\mathrm{M})_{\text {weight }} \quad=((0.0,0.1,0.2,0.3),(0.0,0.1,0.2,0.3),(0.0,0.0,0.0,0.0),(0.0,0.1,0.2,0.3) \\
& \text {,(0.8,0.9,1,1), } \\
& (0.6,0.7,0.8,0.9),(0.8,0.9,1,1),(0.8,0.9,1,1),(0.2,0.3,0.4,0.5) \\
& \text {,(1,1,1,1)) } \\
& \mathrm{A}^{(3)} \mathrm{Tp}(\mathrm{M})_{\text {Average }} \quad=(0.15,0.15,0,0.15,0.925,0.75,0.925,0.925,0.35,1) \\
& \mathrm{A}^{(3)} \mathrm{Tp}(\mathrm{M})_{\mathrm{Max}(\text { weight })} \neg=(0,0,0,0,0,0,0,0,0,1)=\mathrm{A}_{1}{ }^{(3)} \\
& \mathrm{A}_{1}{ }^{(3)} \mathrm{Tp}(\mathrm{M})_{\text {Average }} \quad=(0.15,0.35,0.35,0.15,0.15,0.75,0.75,0.55,0.15,0) \\
& \mathrm{A}_{1}{ }^{(3)} \mathrm{Tp}(\mathrm{M})_{\operatorname{Max}(\text { weight })} \tau=(0,0,0,0,0,1,1,0,0,0)=\mathrm{A}_{2}{ }^{(3)} \\
& \mathrm{A}_{2}{ }^{(3)} \mathrm{Tp}(\mathrm{M})_{\text {Average }} \quad=(0.375,0.225,0.225,0.525,0.375,0.75,0.75,0.975,1.2562,0.675) \\
& \left.\mathrm{A}_{2}{ }^{(3)} \mathrm{Tp}(\mathrm{M})_{\mathrm{Max}(\text { weight })}\right\urcorner=(0,0,0,0,0,0,0,0,1,0)=\mathrm{A}_{3}{ }^{(3)} \\
& \mathrm{A}_{3}{ }^{(3)} \mathrm{Tp}(\mathrm{M})_{\text {Average }} \quad=(0.4396,0.4396,0.1884,1.2562,1.1619,0.4396,1.1619,0.9421,0, \\
& 0.1884) \\
& \mathrm{A}_{3}{ }^{(3)} \mathrm{Tp}(\mathrm{M})_{\mathrm{Max}(\text { weight })}=(0,0,0,1,0,0,0,0,0,0)=\mathrm{A}_{4}{ }^{(3)}
\end{aligned}
$$

$\mathrm{A}_{4}{ }^{(3)} \mathrm{Tp}(\mathrm{M})_{\text {Average }} \quad=(0.1884,0.1884,0.1884,0,1.1619,1.1619,1.2562,1.1619,0.9421$, $0.4396)$
$\left.\mathrm{A}_{4}{ }^{(3)} \mathrm{Tp}(\mathrm{M})_{\mathrm{Max}(\text { weight })}\right\urcorner=(0,0,0,0,0,0,1,0,0,0)=\mathrm{A}_{5}{ }^{(3)}$
$\mathrm{A}_{5}{ }^{(3)} \mathrm{Tp}(\mathrm{M})_{\text {Average }} \quad=(0.4396,0.1884,0.1884,0.4396,0.4396,1.2562,0,0.6909,0.9421$,
0.6909)
$\mathrm{A}_{5}{ }^{(3)} \mathrm{Tp}(\mathrm{M})_{\mathrm{Max}(\text { weight })}{ }^{7}=(0,0,0,0,0,1,0,0,0,0)=\mathrm{A}_{6}{ }^{(3)}$
$\mathrm{A}_{6}{ }^{(3)} \mathrm{Tp}(\mathrm{M})_{\text {Average }} \quad=(0.1884,0.1884,0.1884,0.4396,0.1884,0,1.2562,0.9421,1.1619$, 0.4396,
$\mathrm{A}_{6}{ }^{(3)} \mathrm{Tp}(\mathrm{M})_{\mathrm{Max}(\text { weight })}{ }^{7}=(0,0,0,0,0,0,1,0,0,0)=\mathrm{A}_{7}^{(3)}$
$\mathrm{A}_{5}{ }^{(3)}=\mathrm{A}_{7}{ }^{(3)}$

Do the process for the remaining attributes
Table 4: Weightage of the attributes

Attribute s	TpC_{1}	TpC_{2}	TpC_{3}	TpC 4	TpC_{5}	TpC 6	TpC_{7}	TpC 8	TpC 9	TpC ${ }_{10}$
(10000	0.288	0.288	0.288	0.6737	0.288	0	1.925	1.4437	1.7806	0.6737
$00000)$	7	7	7		7					
(01000	0.962	0.412	0.412	0.9625	0.962	2.75	0	1.5125	2.0625	1.5125
$00000)$	5	5	5		5					
(00100	0.188	0.188	0.188	0.4396	0.188	0	1.2562	0.9421	0.1619	0.4396
00000)	4	4	4		4					
00010	0.15	0.15	0.15	0.35	0.15	0	1	0.75	0.925	0.35
$00000)$										
(00001	0.35	0.15	0.15	0.35	0.35	1	0	0.55	0.75	0.55
00000)										
(00000	0.35	0.15	0.15	0.35	0.35	1	0	0.55	0.75	0.55
$10000)$										
(00000	0.15	0.15	0.15	0.35	0.15	0	1	0.75	0.925	0.35
$01000)$										
(00000	0.15	0.15	0.15	0.35	0.15	0	1	0.75	0.925	0.35
$00100)$										
(00000	0.15	0.15	0.15	0.35	0.15	0	1	0.75	0.925	0.35
$00010)$										
(00000	0.188	0.188	0.188	0.4396	0.188	0	1.2562	0.9421	0.1619	0.4396
$00001)$	4	4	4		4					
Total	2.928	1.978	1.978	4.6154	2.928	4.75	8.4374	8.9404	9.3669	5.5654
Weight										
Total	0.292	0.197	0.197	0.4615	0.292	0.47	0.8437	0.8940	0.9366	0.5565
Average	8	8	8	4	8	5	4	4	9	4

5.Conclusion

We derived the ranking of problems of old age people using a new fuzzy model called TpFCM . This model gives the ranking of the attributes $\mathrm{TpC}_{9}, \mathrm{TpC}_{8}, \mathrm{TpC}_{7}, \mathrm{TpC}_{10}, \mathrm{TpC}_{6}, \mathrm{TpC}_{4}, \mathrm{TpC}_{5 \& 1}$ and $\mathrm{TpC}_{2 \& 3}$ accordingly as $0.93669>0.89404>0.84374>0.55654>0.475>0.4615>0.2928$ >0.1978.From this we could conclude that 0.93669 of attribute TpC_{9} which accounts for "Lack of emotional support" is the major problem, next 0.89404 of TpC_{8} for "Isolation", followed by 0.84374 of TpC_{7} for "Depression". By this ranking method we also found that the least value 0.1978 of $\mathrm{TpC}_{2} \& \mathrm{TpC}_{3}$ for "Treating as Burden", "Forced to sell their property" is a negligible value that not all old people are having this problem.

References

[1]A.Victor Devadoss and M.Clement Joe Anand(2013), "A Analysis of Women Getting Computer and Internet Addiction using Combined Block Fuzzy cognitive Maps(CBFCMs)", International Journal of Engineering Research and Technology, Vol. 2 Issue 2. [2]A.Victor Devadoss, A.Rajkumarand N.Jose ParvinPraveena(2012), "A Study on Miracles through Holy Bible using Combined Overlap Block Fuzzy Cognitive Maps(COBFCMs)", International Journal of Computer Application, Vol. 53, No. 15. [3]A.Victor Devadoss, J.Janet Sheebaand Susanna Mystica Victor(2013), "Analysis of Role of Protein in different Stages of Cancer using Weighted Multi Expert Neural Networks System", International Journā Computing Algorithm, Vol. 2, pp.399-409. [4]M.Clement Joe Anand and A.Victor Devadoss(2013), "Using New Triangular Fuzzy Cognitive Maps (TRFCM) to Analyze Causes of Divorce in the family", International journal of Communication Networking System,Vol:02, December 2013, pp:205-213.
[5]Jun Ye, (2013), " Multicriteria Decision-Making Method Using Expected Values in
Trapezoidal Hesitant Fuzzy Setting",Journal of Convergence Information
Technology(JCIT)Volume8, Number11.
[6]A.Victor Devadoss, M.Clement Joe Anandand E.Mike Dison(2013), "A Study of Five Knowledge Variables of Education using Weighted Multi-Expert Neural Network System", International Journal of Business Intelligents, Vol.2, pp. 250-255.
[7] B.Kosko(1988),"Fuzzy Cognitive Maps", International Journal of man-machine studies,pp.62-75.
[8] B.Kosko, (1988),"Hidden patterns in combined and Adaptive Knowledge Networks", Proc.
Of the First, IEEE
International Conference on Neural Networks (ICNN)-86 377-393).
[9] B.Kosko(1997), "Neural Networks and Fuzzy systems: A Dynamical System Approach to
Machine Intelligence", Prentice Hall of India.
[10] Axelrod,R.(1976).Structure of decision :The congnitive maps of political elites.Princeton University.
[11] B.Schmidt (2002), "How to give agents a personality", In Proceeding of the third workshop on agent-based simulation, Passau, Germany.
[12] D.Dubois and H.Prade(1978), "Operations on fuzzy numbers", The International Journal of Systems Science, Vol.

9, No. 6, pp. 97-105.
[13] F.Laurence (2004), "Fundamentals of Neural Networks: Architectures, Algorithms and Applications", Pearson Education, New Delhi.
[14] George J.Klir/Bo Yuan (2010), "Fuzzy sets and Fuzzy Logic: Theory and Applications", Prentice Hall of India.
[15] G.Towelland J.Shavlik(1994), "Knowledge-Based Artificial Neural Networks", Artificial Intelligence Vol. 70,pp.119-165.
[16] H. J.Zimmermann (2011), "Fuzzy Set Theory and its application", Fourth Edition Springer.
[17] J.Heinstrom(2003), "Five Personality dimensions and their influence on information behavior": Information Research, Vol. 9(1).
[18] J.M.Zurada (1992), "Introduction toArtificial Neural System", St.Paul, MN; West.
[19] L.Fu (2000), "Neural Networks in Computer Intelligence, TMPC Ltd., New Delhi.
[20] Lotfi A. Zadeh (1965), "Fuzzy Set", Information and control, 8, pp.139-146
[21] M.Clement Joe Anandand A.Victor Devadoss(2013), "Application of Topsis Method to Analyze Causes of Suicide Thought in Domestic Violence ", International Journal of Computing Algorithm, Vol.2, pp, 354-362.
[22] S.S.L. Chang and L.A.Zadeh ,1972,on Fuzzy mapping and control, vol 2,no.1,pp 30-34.
[23] C.H.Chou,2009, A fuzzy backorder inventory model and application to determining ihe optical empty container quantity at a part, International journal of Innovative computing, Information and control, Vol.5, no.12, pp 4825-4834.
[24]J.F.Ding ,2009,fuzzy MCDM approach for selecting strategic partner; An empirical study of a container shipping company in Taiwan, International journal of Innovative computing,

Information and control, Vol.5, no.4, pp 1055-1068.
[25]M.Detyniecki and R.Yager,2000, Ranking fuzzy number using α-weighted valuations,
International journal of uncertainty, Fuzziness and knowledge, Based system, Vol. 8, pp. 573591.
[26]Y.L.P Thorani and N.R.Shankar,2012, Ordering generalized trapezoidal fuzzy numbers, Int.
J.contemp Math. Sciences, Vol.7, nol. 7 pp.555-573.

[^0]: * Ph.D. Research Scholar, Department of Mathematics,Hindustan University, Chennai- 91, India.
 ** Head \& Professor, Department of Mathematics,Hindustan University, Chennai- 91,India.

