ON HOMOGENEOUS TERNARY QUADRATIC DIOPHANTINE EQUATION

$$
2\left(x^{2}+y^{2}\right)-3 x y=16 z^{2}
$$

K.Meena*

S.Vidhyalakshmi**
M.A.Gopalan ${ }^{* *}$

S. Aarthy Thangam ${ }^{* * *}$

Abstract

: The ternary quadratic homogeneous equation representing homogeneous cone given by $2\left(x^{2}+y^{2}\right)-3 x y=16 z^{2}$ is analyzed for its non-zero distinct integer points on it. Three different patterns of integer points satisfying the cone under consideration are obtained. A few interesting relations between the solutions and special number patterns namely Polygonal number, Pyramidal number, Centered Polygonal number, Centered Pyramidal number, pronic number and Star number are presented.

Keywords: Ternary homogeneous quadratic, integral solutions

2010 Mathematics Subject Classification: 11D09

[^0]
1. INTRODUCTION:

The ternary quadratic Diophantine equations offer an unlimited field for research due to their variety [1, 20]. For an extensive review of various problems, one may refer [2-19]. This communication concerns with yet another interesting ternary quadratic equation $2\left(x^{2}+y^{2}\right)-3 x y=16 z^{2}$ representing a cone for determining its infinitely many non-zero integral points. Also, a few interesting relations among the solutions are presented.

NOTATIONS:

$T_{m, n}$ - Polygonal number of rank n with size m .
$P_{n}^{m} \quad$ - Pyramidal number of rank n with size m .
$C t_{m, n}$ - Centered Polygonal number of rank n with size m .
$C P_{m, n}$ - Centered Pyramidal number of rank n with size m .
Pr_{n} - Pronic number of rank n .
$S_{n} \quad-$ Star number of rank n.

2. METHOD OF ANALYSIS:

The ternary quadratic equation to be solved for its non-zero distinct integer solutions is

$$
\begin{equation*}
2\left(x^{2}+y^{2}\right)-3 x y=16 z^{2} \tag{1}
\end{equation*}
$$

The substitution of the linear transformations

$$
\begin{equation*}
x=u+v, y=u-v \tag{2}
\end{equation*}
$$

in (1) leads to

$$
\begin{equation*}
u^{2}+7 v^{2}=16 z^{2} \tag{3}
\end{equation*}
$$

Assume $z=z(a, b)=a^{2}+7 b^{2} ; a, b>0$
(3) is solved through different approaches and different patterns of solutions thus obtained for (1) are illustrated below:

International Journal of Engineering, Science and Mathematics http://www.ijmra.us

2.1 PATTERN: 1

Write (3) as

$$
\begin{equation*}
u^{2}-9 z^{2}=7 z^{2}-7 v^{2} \tag{5}
\end{equation*}
$$

Factorizing (5) we have

$$
\begin{equation*}
(u+3 z)(u-3 z)=7(z+v)(z-v) \tag{6}
\end{equation*}
$$

which is equivalent to the system of double equations

$$
\left.\begin{array}{l}
b u-a v+(3 b-a) z=0 \tag{7}\\
-a u-7 b v+(3 a+7 b) z=0
\end{array}\right\}
$$

Applying the method of cross multiplication, we get

$$
\begin{aligned}
& u=-3 a^{2}+21 b^{2}-14 a b \\
& v=a^{2}-7 b^{2}-6 a b \\
& z=-a^{2}-7 b^{2}
\end{aligned}
$$

Employing (2), the values of x, y, z satisfying (1) are given by

$$
\begin{aligned}
& x=x(a, b)=-2 a^{2}+14 b^{2}-20 a b \\
& y=y(a, b)=-4 a^{2}+28 b^{2}-8 a b \\
& z=z(a, b)=-a^{2}-7 b^{2}
\end{aligned}
$$

PROPERTIES:

$>x(b(b+1), b)-2 z(b(b+1), b)-2 T_{30, b}+40 P_{b}^{5} \equiv 0(\bmod 2)$
$>4 z\left(a, 7 a^{2}-1\right)+y\left(a, 7 a^{2}-1\right)+T_{18, a}+48 C P_{7, a} \equiv 0(\bmod 7)$
$>x(a, 1)+y(a, 1)+S_{a} \equiv 9(\bmod 34)$

2.2 PATTERN: 2

International Journal of Engineering, Science and Mathematics

One may write (3) as

$$
\begin{equation*}
u^{2}+7 v^{2}=16 z^{2} * 1 \tag{8}
\end{equation*}
$$

Write 16 as

$$
\begin{equation*}
16=(3+i \sqrt{7})(3-i \sqrt{7}) \tag{9}
\end{equation*}
$$

Also, write 1 as

$$
\begin{equation*}
1=\frac{(1+i 3 \sqrt{7})(1-i 3 \sqrt{7})}{64} \tag{10}
\end{equation*}
$$

Substituting (4), (9) and (10) in (8) and employing the method of factorization, define

$$
(u+i \sqrt{7} v)(u-i \sqrt{7} v)=(3+i \sqrt{7})(3-i \sqrt{7}) \frac{(1+i 3 \sqrt{7})(1-i 3 \sqrt{7})}{64}(a+i \sqrt{7} b)^{2}(a-i \sqrt{7} b)^{2}
$$

Equating real and imaginary parts, we have

$$
\left.\begin{array}{l}
u=\frac{1}{4}\left(-9 a^{2}+63 b^{2}-70 a b\right) \\
v=\frac{1}{4}\left(5 a^{2}-35 b^{2}-18 a b\right) \tag{11}
\end{array}\right\}
$$

The choices $a=2 A$ and $b=2 B$ in (4) and (11) lead to

$$
\begin{align*}
& u=u(A, B)=-9 A^{2}+63 B^{2}-70 A B \\
& v=v(A, B)=5 A^{2}-35 B^{2}-18 A B \\
& z=z(A, B)=4 A^{2}+28 B^{2} \tag{11A}
\end{align*}
$$

In view of (2), the integer values of x and y are given by,

$$
\left.\begin{array}{l}
x=x(A, B)=-4 A^{2}+28 B^{2}-88 A B \\
y=y(A, B)=-14 A^{2}+98 B^{2}-52 A B \tag{11B}
\end{array}\right\}
$$

Thus (11A) and (11B) represent non-zero distinct integer solutions of (1) in two parameters.

PROPERTIES:

$$
\begin{aligned}
& >y\left(5 B^{2}+1, B\right)+z\left(5 B^{2}+1, B\right)+250 T_{4, B}^{2}-26 \operatorname{Pr}_{B}+312 C P_{5, B} \equiv 0(\bmod 2) \\
& >z(A, A(A+1))-x(A, A(A+1))-T_{18, A}-176 P_{A}^{5} \equiv 0(\bmod 7)
\end{aligned}
$$

International Journal of Engineering, Science and Mathematics http://www.ijmra.us

$$
>2 y\left(A, 4 A^{2}-1\right)-6 x\left(A, 4 A^{2}-1\right)-z\left(A, 4 A^{2}-1\right)+8 \operatorname{Pr}_{A}-2544 C P_{8, A} \equiv 0(\bmod 2)
$$

2.3 PATTERN: 3

Also, instead of (10), write 1 as

$$
\begin{equation*}
1=\frac{(3+i 4 \sqrt{7})(3-i 4 \sqrt{7})}{121} \tag{12}
\end{equation*}
$$

Following the procedure presented in pattern: 2, the corresponding values of x and y satisfying (1) are

$$
\begin{aligned}
& x=x(A, B)=-44 A^{2}+308 B^{2}-2728 A B \\
& y=y(A, B)=-374 A^{2}+2618 B^{2}-1892 A B \\
& z=z(A, B)=121 A^{2}+847 B^{2}
\end{aligned}
$$

PROPERTIES:

$>x(1, B)-308 \operatorname{Pr}_{B} \equiv 0(\bmod 2)$
$>y(A, A+1)-z(A, A+1)-1276 \operatorname{Pr}_{A}+344 C t_{11, A} \equiv 1(\bmod 2)$
$>14 x\left(2 B^{2}+1, B\right)-y\left(2 B^{2}+1, B\right)-2 z\left(2 B^{2}+1, B\right)-308 T_{24, B}+108900 C P_{4, B} \equiv 0(\bmod 2)$
$>4 z\left(A, 7 A^{2}-1\right)-11 x\left(A, 7 A^{2}-1\right)-121 T_{18, A}-180048 C P_{7, A} \equiv 0(\bmod 7)$

3. REMARKABLE OBSERVATIONS:

Let p, q be any two non-zero distinct positive integers such that $\mathrm{p}>\mathrm{q}>0$.
Define $p=x_{n}+\frac{y_{n}}{2}$ and $q=\frac{y_{n}}{2}$. Treat p, q as the generators of the Pythagorean triangle $T(\alpha, \beta, \gamma)$ where $\alpha=2 p q, \beta=p^{2}-q^{2}, \gamma=p^{2}+q^{2}$. Let P, A represent the perimeter and the area of T. Then, each of the following expressions is a perfect square.
a. $\quad 6 \gamma-2 \alpha-4 \beta-3 \sqrt{2(\gamma-\alpha)(\gamma-\beta)}$
b. $2 \gamma+2 \alpha-\frac{16 A}{P}-3 \sqrt{2(\gamma-\alpha)\left(\alpha-\frac{4 A}{P}\right)}$
c. $10 \gamma-8 \beta-6 \alpha+\frac{16 A}{P}-3 \sqrt{2(\gamma-\alpha)\left(2(\gamma-\beta)+\frac{4 A}{P}-\alpha\right)}$

4. CONCLUSION:

International Journal of Engineering, Science and Mathematics http://www.ijmra.us

2014
Volume 3, Issue 2

In this paper, we have presented three different patterns of non-zero distinct integer solutions of the homogeneous cone given by $2\left(x^{2}+y^{2}\right)-3 x y=16 z^{2}$.To conclude, one may search for other patterns of non-zero integer distinct solution and their corresponding properties

5. REFERENCES:

1. L.E. Dickson, History of Theory of Numbers, Vol.2, Chelsea Publishing company, NewYork, 1952.
2. M.A. Gopalan, D. Geetha, Lattice points on the hyperbolid of two sheets $x^{2}-6 x y+y^{2}+6 x-2 y+5=z^{2}+4$, Impact J.sci tech; $\operatorname{Vol}(4), N o .1,23-32,2010$.
3. M.A. Gopalan, and V. Pandichelvi, Integral solutions of ternary quadratic equation $z(x-y)=4 x y$, Impact J.sci TSech; Vol (5),No.1,01-06, 2011.
4. M.A. Gopalan, J. Kalinga Rani, On ternary quadratic equation $x^{2}+y^{2}=z^{2}+8$, Impact J.sci tech ; Vol (5), no.1,39-43, 2011.
5. M.A. Gopalan, S. Vidhyalakshmi and A. Kavitha Integral points on the homogeneous Cone $z^{2}=2 x^{2}-7 y^{2}$, DiophantusJ.Math., 1(2),127-136, 2012.
6. M.A. Gopalan, S. Vidhyalakshmi, G. Sumathi, Lattice points on the hyperboloid one sheet $4 z^{2}=2 x^{2}+3 y^{2}-4$, Diophantus J.math., 1(2),109-115, 2012.
7. M.A. Gopalan, S. Vidhyalakshmi and K. Lakshmi, Integral points on the hyperboloid of two sheets $3 y^{2}=7 x^{2}-z^{2}+21$, Diophantus J.math., 1(2),99-107, 2012.
8. M.A. Gopalan and G. Srividhya, Observations on $y^{2}=2 x^{2}+z^{2}$ Archimedes J.Math, 2(1), 7-15, 2012.
9. M.A. Gopalan, G. Sangeetha, Observation on $y^{2}=3 x^{2}-2 z^{2}$ Antarctica J.Math, 9(4), 359-362, 2012.
10. M.A. Gopalan and R. Vijayalakshmi, On the ternary quadratic equation $x^{2}=\left(\alpha^{2}-1\right)\left(y^{2}-z^{2}\right), \alpha>1$, Bessel J.Math, 2(2),147-151, 2012.
11. Manju somanath, G. Sangeetha, M.A. Gopalan, On the homogeneous ternary quadratic Diophantine equation $x^{2}+(2 k+1) y^{2}=(k+1)^{2} z^{2}$, Bessel J.Math, 2(2),107-110, 2012.
12. Manju somanath, G. Sangeetha, M.A. Gopalan, Observations on the ternary quadratic equation $y^{2}=3 x^{2}+z^{2}$, Bessel J.Math, 2(2),101-105, 2012.
13. G. Akila, M.A. Gopalan, S. Vidhyalakshmi, Integral solution of $43 x^{2}+y^{2}=z^{2}$ ijoer,Vol.1, Issue 4, 70-74, 2013.

International Journal of Engineering, Science and Mathematics http://www.ijmra.us

2014
14. T. Nancy, M.A. Gopalan, S. Vidhyalakshmi, On Ternary quadratic Diophantine equation $47 X^{2}+Y^{2}=Z^{2}$, ijoer,Vol.1, Issue 4, 51-55, 2013.
15. M.A. Gopalan, S. Vidhyalakshmi, C. Nithya, Integral points on the ternary quadratic Diophantine equation $3 x^{2}+5 y^{2}=128 z^{2}$, Bull.Math.\&Stat.Res Vol.2, Issue1, 25-31, 2014.
16. S. Priya, M.A. Gopalan, S. Vidhyalakshmi, Integral solutions of ternary quadratic Diophantine equation $7 X^{2}+2 Y^{2}=135 Z^{2}$, Bull.Math.\&Stat.Res Vol.2, Issue1, 32-37, 2014.
17. K. Meena, S. Vidhyalakshmi, M.A. Gopalan, S. Aarthy Thangam, Integer solutions on the homogeneous cone $4 x^{2}+3 y^{2}=28 z^{2}$, Bull.Math.\&Stat.Res Vol.2, Issue1, 47-53, 2014.
18. M.A. Gopalan, S. Vidhyalakshmi and J. Umarani, On the Ternary Quadratic Diophantine equation $6\left(x^{2}+y^{2}\right)-8 x y=21 z^{2}$ Sch.J.Eng.Tech., 2(2A): 108-112, 2014.
19. K.Meena, S. Vidhyalakshmi, S. Divya, M.A. Gopalan, Integral Points on the cone $Z^{2}=41 X^{2}+Y^{2}$ Sch.J.Eng.Tech., 2(2B), 301-304, 2014.
20. Mordell, L.J., Diophantine equations, Academic press, New York, 1969

[^0]: * Former VC, Bharathidasan University, Trichy-620 024, Tamil Nadu, India.
 ** Professor, Department of Mathematics, Shrimati Indira Gandhi College, Trichy-620 002, Tamil Nadu, India.
 *** M.Phil student, Department of Mathematics, Shrimati Indira Gandhi College, Trichy-620 002, Tamil Nadu, India.

