OBSERVATIONS ON THE HOMOGENEOUS QUINTIC EQUATION WITH FOUR UNKNOWNS

$$
x^{5}-y^{5}=2 z^{5}+5(x+y)\left(x^{2}-y^{2}\right) w^{2}
$$

S.Vidhyalakshmi*

K.Lakshmi*
M.A.Gopalan*

Abstract

We obtain infinitely many non-zero integer quadruples (x, y, z, w) satisfying the quintic equation with four unknowns $x^{5}-y^{5}=2 z^{5}+5(x+y)\left(x^{2}-y^{2}\right) w^{2}$.Various interesting properties among the values of x, y, z and w are presented. KEYWORDS: Quintic equation with four unknowns, integral solutions. MSC 2000 Mathematics subject classification: 11D41.

\section*{NOTATIONS:} $T_{m, n}=n\left(1+\frac{(n-1)(m-2)}{2}\right)$-Polygonal number of rank n with size m $P_{n}^{m}=\frac{1}{6} n(n+1)((m-2) n+(5-n)-$ Pyramidal number of rank n with size m $P R_{p}=n(n+1)$-Pronic number of rank n $S_{n}=6 n(n-1)+1-$ Star number of rank n $J_{n}=\frac{1}{3} 2^{n}-(-1)^{n}$-Jacobsthal number of rank n $j_{n}=2^{n}+(-1)^{n}$ - Jacobsthal-Lucas number of rank n $K Y_{n}=\left(2^{n}+1\right)^{2}-2$-keynea number.

[^0]
1. INTRODUCTION

The theory of diophantine equations offers a rich variety of fascinating problems. In particular,quintic equations, homogeneous and non-homogeneous have aroused the interest of numerous mathematicians since antiquity[1-3].For illustration, one may refer [4-5] for quintic equation with three unknowns and [6-7] for quintic equation with five unknowns. This paper concerns with the problem of determining non-trivial integral solutions of the homogeneous quintic equation with four unknowns given by $x^{5}-y^{5}=2 z^{5}+5(x+y)\left(x^{2}-y^{2}\right) w^{2}$.A few relations among the solutions are presented.

2. Method of Analysis:

The diophantine equation representing the quintic equation with four unknowns under consideration is

$$
\begin{equation*}
x^{5}-y^{5}=2 z^{5}+5(x+y)\left(x^{2}-y^{2}\right) w^{2} \tag{1}
\end{equation*}
$$

It is observed that (1) is satisfied by the following non-zero distinct integer quadruples:

$$
(x, y, z, w):(6 k,-2 k, 4 k, 3 k),\left(2\left(2 k^{2}+2 k-1\right), 2\left(2 k^{2}-2 k-1\right), 4 k, 2 k^{2}+1\right)
$$

However, we have other patterns of solutions which are illustrated below:

2.1: Pattern I:

Introduction of the transformations

$$
\begin{equation*}
x=u+v, y=u-v, z=v \tag{2}
\end{equation*}
$$

in (1) leads to

$$
\begin{equation*}
u^{2}+2 v^{2}=4 \cdot w^{2} \tag{3}
\end{equation*}
$$

which is of the form $z^{2}=D x^{2}+y^{2}$.
Using the most sited solution of the above equation, the corresponding non-zero distinct integral solutions of (1) are given by

$$
\left.\begin{array}{l}
x=2 p^{2}-4 q^{2}+4 p q \tag{4}\\
y=2 p^{2}-4 q^{2}-4 p q \\
z=4 p q \\
w=p^{2}+2 q^{2}
\end{array}\right\}
$$

Following are some interesting relations between the solutions of (1):

1. $x(p, p)+y(p, p)+z(p, p)+w(p, p)=2 T_{5, p}+P R_{p}-T_{4, p}$
2. Each of the following expression is a nasty number:
(a) $6[4 w(p, q)-x(p, q)-y(p, q)]$.
(b). $6[x(p, 1)-y(p, 1)-z(p, 1)+w(p, 1)]+12$
3. $x(p, q)-z(p, q)-w(p, q)-T_{4, p}+S_{p}-2 T_{10, q}+8 t_{4, q}=1$
4. $x(p, p+1)-y(p, p+1)+w(p, p+1)-2 z(p, p+1)-6 T_{3, p}+T_{6, P}-2 T_{4, P}=2$
5. $Z(p(p+1), p)+W(p(p+1), p)-8 T_{3, p}^{2}-T_{4, p}^{2}-6 P_{p}^{4}-2 T_{5, p}+3 T_{4, p}=0$
6. $z\left(2^{2 n}, 1\right)+w\left(2^{n}, 1\right)=j_{2 n+2}+j_{2 n}$
7. $x\left(2^{n}, 1\right)+y\left(2^{n}, 1\right)=4 K Y_{n}-4 j_{2 n}$
8. The triple $(x(p, p), y(p, p), z(p, p))$ satisfies the homogeneous cone $Y^{2}-X^{2}=2 Z^{2}$

2.2: Pattern II:

In (2), the choice $v=2 V, u=2 U$
gives
$U^{2}+2 V^{2}=w^{2}$
After performing a few calculations, the integral solutions of (1) are obtained as

$$
\left.\begin{array}{l}
x=4 p^{2}-2 q^{2}+4 p q \\
y=4 p^{2}-2 q^{2}-4 p q \tag{7}\\
z=4 p q \\
w=2 p^{2}+q^{2}
\end{array}\right\}
$$

Note: Replacing q by p and p by q, x by $-x$ and y by $-y$, in (7), we obtain the solutions of pattern (1).

The above solution set (7) satisfies the following properties:

1. $x(p, p)+y(p, p)+z(p, p)+w(p, p)=22 T_{3, p}+11 T_{6, p}-22 T_{4, p}$
2. Each of the following expression is a nasty number:
(a). $3[4 w(p, q)-x(p, q)-y(p, q)]$.
(b). $x\left(2^{n}, 1\right)-y\left(2^{n}, 1\right)+z\left(2^{n}, 1\right)-6 j_{2 n+1}$
3. $x(p+2, p+1)-y(p+2, p+1)-16 T_{3, p}+32 T_{5, P}-48 t_{4, P}$ is a biquadratic integer.
4. $20 T_{3, p}-x(p, 1)-y(p, 1)-z(p, 1)-w(p, 1) \equiv 0(\bmod 3)$
5. $x\left(2^{n}, 1\right)-y\left(2^{n}, 1\right)+z\left(2^{n}, 1\right)+w\left(2^{n}, 1\right)-42 J_{2 n} \equiv 0(\bmod 5)$
6. The triple $(x(p, p), y(p, p), z(p, p))$ satisfies the homogeneous cone $X^{2}-2 Z^{2}=Y^{2}$
7. $x(p(p+1), p)-y(p(p+1), p)-z(p(p+1), p)+w(p(p+1), p)=8 P_{p}^{5}+2 T_{4, p^{2}}+12 P_{p}^{4}-6 T_{3, p}+P R_{p}-T_{4, p}$

In addition to the above two patterns, there are two more patterns of solutions (1) which we present below.

2.3: Pattern III:

Assume $w=p^{2}+2 q^{2}, p, q \neq 0$
Write 4 as

$$
\begin{equation*}
4=\frac{(2+4 i \sqrt{2})(2-4 i \sqrt{2})}{3^{2}} \tag{9}
\end{equation*}
$$

Using (8) \& (9) in (3) and applying the method of factorization define:

$$
(u+i \sqrt{2} v)=\frac{(2+4 i \sqrt{2})(p+i \sqrt{2} q)^{2}}{3}
$$

Equating real and imaginary parts, we get

$$
\left.\begin{array}{l}
u=\frac{2}{3}\left(p^{2}-2 q^{2}-8 p q\right) \\
v=\frac{4}{3}\left(p^{2}-2 q^{2}+p q\right) \tag{10}
\end{array}\right\}
$$

In view of (2) and (10) the solutions of (1) are obtained as

$$
\left.\begin{array}{l}
x=18\left(p^{2}-2 q^{2}-2 p q\right) \\
y=-6\left(p^{2}-2 q^{2}+10 p q\right) \\
z=12\left(p^{2}-2 q^{2}+p q\right) \\
w=9\left(p^{2}+2 q^{2}\right)
\end{array}\right\}
$$

2.4: Pattern IV:

Consider (6) as

$$
\begin{equation*}
U^{2}+2 V^{2}=1 \times w^{2} \tag{12}
\end{equation*}
$$

Take 1 as

$$
\begin{equation*}
1=\frac{(7+i 4 \sqrt{2})(1-i 4 \sqrt{2})}{9^{2}} \tag{13}
\end{equation*}
$$

Using (8) \& (13) in (12) and applying the method of factorization define:

$$
\begin{equation*}
(U+i \sqrt{2} V)=\frac{(7+i 4 \sqrt{2})(p+i \sqrt{2} q)^{2}}{9} \tag{14}
\end{equation*}
$$

Equating real and imaginary parts, we get

$$
\left.\begin{array}{l}
U=\frac{1}{9}\left(7\left(p^{2}-2 q^{2}\right)-16 p q\right) \\
V=\frac{1}{9}\left(4\left(p^{2}-2 q^{2}\right)+14 p q\right) \tag{15}
\end{array}\right\}
$$

In view of (2), (5) and (15) the integral solutions of (1) are found to be

$$
\left.\begin{array}{l}
x=2\left(11 p^{2}-22 q^{2}-2 p q\right) \\
y=2\left(3 p^{2}-6 q^{2}-30 p q\right) \\
z=2\left(4 p^{2}-8 q^{2}+14 p q\right) \\
w=9\left(p^{2}+2 q^{2}\right)
\end{array}\right\}
$$

3. Conclusion:

It is to be noted that, instead of (13), one may write 1 as

$$
1=\frac{(1+i 2 \sqrt{2})(1-i 2 \sqrt{2})}{3^{2}}
$$

Following the procedure presented above, the corresponding integral solutions of (1) are obtained.

REFERENCES:

1. L.E.Dickson, History of Theory of Numbers, Vol.11, Chelsea Publishing company, New York (1952).

2 .L.J.Mordell, Diophantine equations, Academic Press, London(1969).
3. Carmichael ,R.D.,The theory of numbers and Diophantine Analysis,Dover Publications, New York (1959)

4 .M.A.Gopalan \& A.Vijayashankar, An Interesting Dio.problem $x^{3}-y^{3}=2 z^{5}$,
Advances in Mathematics, Scientific Developments and Engineering Application,
Narosa Publishing House, Pp 1-6, 2010.
5 .M.A.Gopalan \& A.Vijayashankar, Integrated solutions of ternary quintic
Diophantine equation $x^{2}+(2 k+1) y^{2}=z^{5}$, International Journal of Mathematical Sciences 19(1-2), 165-169,(jan-june 2010)
6. M.A.Gopalan \& A.Vijayashankar, Integrated solutions of non-homogeneous quintic equation with five unknowns $x y-z w=R^{5}$, Bessel J.Math.,1(1),23-30,2011.
7. M.A.Gopalan \& A.Vijayashankar, solutions of quintic equation with five unknowns $x^{4}-y^{4}=2\left(z^{2}-w^{2}\right) P^{3}$, Accepted for Publication in International Review of Pure and Applied Mathematics.

[^0]: * Department of Mathematics, Shrimati Indira Gandhi College, Trichy

