EQUALITY OF CENTERED DECAGONAL NUMBER WITH SPECIAL M-GONAL NUMBERS

Manju Somanath*

V.Sangeetha*

M.A.Gopalan**

Abstract

Explicit formulas for the ranks of Centered Decagonal numbers which are simultaneously equal to Triangular number,Square number,Pentagonal number,Hexagonal number,Octagonal number and Decagonal number in turn are presented.

Keywords

Centered Decagonal number, Triangular number,Square number,Pentagonal number,Hexagonal number,Octagonal number,Decagonal number

^{**} Professor, Department of Mathematics, Srimathi Indira Gandhi College, Trichy-2

A Quarterly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Engineering, Science and Mathematics http://www.ijmra.us

Introduction

In [1],the equality of Triangular numbers which are simultaneously equal to Pentagonal numbers and Hexagonal numbers are illustrated through examples.

In [2], explicit formulas for the ranks of Triangular numbers which are simultaneously equal to Pentagonal,Octagonal,Decagonal and Dodecagonal numbers in turn are presented.

In [3],explicit formula for the ranks of centered Hexagonal numbers which are simultaneously equal to Triangular number,Pentagonal number,Hexagonal number,Heptagonal number,Decagonal number,Dodecagonal number in turn are presented.

In [4],explicit formula for finding the ranks n of Hex-numbers which are simultaneously equal to Centered m-gonal numbers such as Centered Triangular, Centered Square, Centered Pentagonal, Centered Heptagonal, Centered Octagonal, Centered Nonagonal, Centered Decagonal numbers of rank m are presented.

In [5],a few interesting relations among the Centered Hexagonal numbers are obtained. Also the ranks of Centered Hexagonal numbers which are simultaneously equal to Nonagonal numbers are presented.

Method of Analysis

Denoting the ranks of the Centered Decagonal number and Triangular number to be C and T respectively, the identity

Centered Decagonal number = Triangular number	(1)
is written as	
$y^2 = 10x^2 - 1$	(2)
where $x = 2C + 1$, $y = 2T + 1$	(3)
whose initial solution is $x_0 = 1, y_0 = 3$	(4)

Let $(\tilde{x}_n, \tilde{y}_n)$ be the general solution of the Pellian

$$y^{2} = 10x^{2} + 1$$

where $\tilde{x}_{n} = \frac{1}{2\sqrt{10}} \left\{ \left(19 + 6\sqrt{10} \right)^{n+1} - \left(19 - 6\sqrt{10} \right)^{n+1} \right\}$

http://www.ijmra.us

A Quarterly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Engineering, Science and Mathematics

Volume 2, Issue 2

<u>ISSN: 2320-0294</u>

$$\tilde{y}_n = \frac{1}{2} \left\{ \left(19 + 6\sqrt{10} \right)^{n+1} + \left(19 - 6\sqrt{10} \right)^{n+1} \right\}, n = 0, 1, 2, \dots$$

Applying Brahmagupta's Lemma between the solutions (x_0, y_0) and $(\tilde{x}_n, \tilde{y}_n)$, the sequences of values of x and y satisfying equation (2) is given by

$$x_{n+1} = \frac{1}{2\sqrt{10}} \left\{ \left(19 + 6\sqrt{10} \right)^{n+1} (3 + \sqrt{10}) - \left(19 - 6\sqrt{10} \right)^{n+1} (3 - \sqrt{10}) \right\}$$
$$y_{n+1} = \frac{1}{2} \left\{ \left(19 + 6\sqrt{10} \right)^{n+1} (3 + \sqrt{10}) + \left(19 - 6\sqrt{10} \right)^{n+1} (3 - \sqrt{10}) \right\}$$

In view of (3) the ranks of Centered Decagonal and Triangular numbers are respectively given by

$$C_{n+1} = \frac{1}{4\sqrt{10}} \left\{ \left(19 + 6\sqrt{10} \right)^{n+1} \left(3 + \sqrt{10} \right) - \left(19 - 6\sqrt{10} \right)^{n+1} \left(3 - \sqrt{10} \right) - 2\sqrt{10} \right\}$$

$$T_{n+1} = \frac{1}{4} \left\{ \left(19 + 6\sqrt{10} \right)^{n+1} \left(3 + \sqrt{10} \right) + \left(19 - 6\sqrt{10} \right)^{n+1} \left(3 - \sqrt{10} \right) - 2 \right\}$$

and their corresponding recurrence relations are found to be

$$C_{n+3} = 38C_{n+2} - C_{n+1} + 18$$
$$T_{n+3} = 38T_{n+2} - T_{n+1} + 18$$

IJESN

In a similar manner we present below the ranks of Centered Decagonal numbers which are simultaneously equal to Square number, Pentagonal number, Hexagonal number, Octagonal number, Decagonal number in tabular form:

S.No.	m-gonal	General Forms of Ranks
	number	
1.	Centered Decagonal number (C) Square number(S)	$C_{n+1} = \frac{1}{4\sqrt{5}} \left\{ \left(9 + 4\sqrt{5}\right)^{n+1} \left(2 + \sqrt{5}\right) - \left(9 - 4\sqrt{5}\right)^{n+1} \left(2 - \sqrt{5}\right) - 2\sqrt{5} \right\}$ $S_{n+1} = \frac{1}{4} \left\{ \left(9 + 4\sqrt{5}\right)^{n+1} \left(2 + \sqrt{5}\right) + \left(9 - 4\sqrt{5}\right)^{n+1} \left(2 - \sqrt{5}\right) \right\}$ $n = 0, 1, 2, \dots$
2.	Centered Decagonal number (C) Pentagonal number (P)	$C_{n+1} = \frac{1}{4\sqrt{30}} \left\{ \left(11 + 2\sqrt{30} \right)^{n+1} \left(5 + \sqrt{30} \right) - \left(11 - 2\sqrt{30} \right)^{n+1} \left(5 - \sqrt{30} \right) - 2\sqrt{30} \right\}$ $P_{n+1} = \frac{1}{12} \left\{ \left(11 + 2\sqrt{30} \right)^{n+1} \left(5 + \sqrt{30} \right) + \left(11 - 2\sqrt{30} \right)^{n+1} \left(5 - \sqrt{30} \right) + 2 \right\}$ $n = 0, 1, 2, \dots$
3.	Centered Decagonal number (C) Hexagonal number (H)	$C_{n+1} = \frac{1}{4\sqrt{10}} \left\{ \left(19 + 6\sqrt{10} \right)^{n+1} \left(3 + \sqrt{10} \right) - \left(19 - 6\sqrt{10} \right)^{n+1} \left(3 - \sqrt{10} \right) - 2\sqrt{10} \right\}$ $H_{n+1} = \frac{1}{8} \left\{ \left(19 + 6\sqrt{10} \right)^{n+1} \left(3 + \sqrt{10} \right) + \left(19 - 6\sqrt{10} \right)^{n+1} \left(3 - \sqrt{10} \right) + 2 \right\}$ $n = 0, 1, 2, \dots$

A Quarterly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Engineering, Science and Mathematics

http://www.ijmra.us

Volume 2, Issue 2

ISSN: 2320-0294

211

	Centered	$C_n = \frac{1}{\sqrt{25}} \left\{ \left(4 + \sqrt{15}\right)^{n+1} - \left(4 - \sqrt{15}\right)^{n+1} - 2\sqrt{15} \right\}$
	Decagonal	$4\sqrt{15}$ (1 , n+1 , n+1)
4.	number (C)	$M_n = \frac{1}{12} \left\{ \left(4 + \sqrt{15} \right)^{n+1} + \left(4 - \sqrt{15} \right)^{n+1} + 4 \right\}$
	Octagonal	
	number (M)	n = 1, 2,
	Centered	$C = \frac{1}{2} \left((0 + \sqrt{E})^{n+1} (\Gamma + 2\sqrt{E}) - (0 - \sqrt{E})^{n+1} (\Gamma - 2\sqrt{E}) - \sqrt{E} \right)$
	Decagonal	$C_{n+1} = \frac{1}{8\sqrt{5}} \left\{ (9+4\sqrt{5}) - (5+2\sqrt{5}) - (9-4\sqrt{5}) - (5-2\sqrt{5}) - 4\sqrt{5} \right\}$
5	number (C)	$0 = -\frac{1}{2} \left\{ (9 + 4\sqrt{5})^{n+1} (5 + 2\sqrt{5}) + (9 - 4\sqrt{5})^{n+1} (5 - 2\sqrt{5}) + 6 \right\}$
5.	Decegonal	$Q_{n+1} = \frac{1}{16} \left[(3+4\sqrt{3}) - (3+2\sqrt{3}) + (3-4\sqrt{3}) - (3-2\sqrt{3}) + 0 \right]$
	Decagonal	
	number (Q)	$n = 0, 1, 2, \dots$

The recurrence relations satisfied by the ranks of each of the m-gonal numbers presented in the table above are as follows:

S.No.	Recurrence Relations
1.	$C_{n+3} = 18C_{n+2} - C_{n+1} + 8$, $C_1 = 8$, $C_2 = 152$
	$S_{n+3} = 18S_{n+2} - S_{n+1}$, $S_1 = 19$, $S_2 = 341$
2.	$C_{2n+4} = 482C_{2n+2} - C_{2n} + 240$, $C_2 = 230$, $C_4 = 111100$
	$P_{2n+4} = 482P_{2n+2} - P_{2n} - 80$, $P_2 = 421$, $P_4 = 202841$
3.	$C_{2n+4} = 1442C_{2n+2} - C_{2n} + 720$, $C_2 = 702$, $C_4 = 1013004$
	$H_{2n+4} = 1442H_{2n+2} - H_{2n} - 360$, $H_2 = 1111$, $H_4 = 1601701$
4.	$C_{2n+4} = 62C_{2n+2} - C_{2n} + 30$, $C_2 = 31$, $C_4 = 1952$
	$M_{2n+4} = 62M_{2n+2} - M_{2n} - 20$, $M_2 = 41$, $M_4 = 2521$
5.	$C_{n+3} = 18C_{n+2} - C_{n+1} + 8$, $C_1 = 9$, $C_2 = 170$
	$Q_{n+3} = 18Q_{n+2} - Q_{n+1} - 6$, $Q_1 = 11$, $Q_2 = 191$

Conclusion

To conclude, one may search for the other m-gonal numbers satisfying the relation under consideration.

A Quarterly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Engineering, Science and Mathematics http://www.ijmra.us

IJESN

ISSN: 2320-0294

References

[1].L.E.Dickson,History of Theory of Numbers,Chelsea Publishing Company, New York, 2, 1952.

[2].M.A.Gopalan and S.Devibala, Equality of Triangular Numbers with Special m-gonal numbers, Bulletin of the Allahabad Mathematical Society, Vol.21, 25-29, 2006.

[3].M.A.Gopalan, Manju Somanath and N.Vanitha, Equality of Centered Hexagonal number with special m-gonal numbers, Impact J.Sci.Tech., Vol.1(2), 31-34 2007.

[4].M.A.Gopalan and A.Gnanam,Equality of Centered Hexagonal number with special Centered m-gonal numbers,International Journal of Mathematics,Computer Science and Information Technology,Vol.1(2),179-184, July-Dec 2008.

[5].M.A.Gopalan and A.Gnanam,Observation on Centered Hexagonal Number, Impact J. Sci.Tech, Vol.2(1),25-29,2008.

[6].T.S.Bhanumurthy, Ancient Indian Mathematics, New Age Publishers Ltd., New Delhi, 1995.

