OBSERVATIONS ON THE BIQUADRATIC WITH FIVE UNKNOWS

$$
x^{4}-y^{4}-2 x y\left(x^{2}-y^{2}\right)=z\left(X^{2}+Y^{2}\right)
$$

S.Vidhyalakshmi*

M.A.Gopalan ${ }^{*}$

A.Kavitha*

Abstract

: We obtain infinitely many non-zero integer quintuples (x, y, z, X, Y) satisfying the biquadratic equation with five unknowns $x^{4}-y^{4}-2 x y\left(x^{2}-y^{2}\right)=z\left(X^{2}+Y^{2}\right)$. Various interesting properties between the values of $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{X}, \mathrm{Y}$ and special number patterns, namely, polygonal numbers, centered pyramidal and polygonal numbers, Jacob-lucas numbers and kynea numbers are presented.

Key words: biquadratic equation with five unknowns, integral solutions, polygonal numbers, centered figurate numbers.

MSC 2000 Mathematics subject classification:11D25.

\section*{Notations:} $T_{m, n}=$ Polygonal number of rank n with size m. $P_{n}^{m}=$ Pyramidal number of rank n with size m. $C P_{n}^{m}=$ Centered pyramidal number of rank n whose generating polygon has m sides. $S_{n}=$ Star number of rank n

[^0]\[

$$
\begin{aligned}
j_{n} & =\text { Jacobsthal-Lucas number of rank } \mathrm{n} \\
k y_{n} & =\text { kynea number of rank } \mathrm{n} \\
F_{4, n, 5} & =\text { Four dimensional pentagonal figurate number of rank } \mathrm{n} .
\end{aligned}
$$
\]

Introduction:

Biquadratic Diophantine equations, homogeneous and non-homogeneous, have aroused the interest of numerous Mathematicians since ambiguity as can be seen from
[1-7]. Particularly in [8,9] biquadratic diophantine equations with five unknowns are analysed for their non-zero integral solutions. In this paper, another interesting biquadratic equation with five unknowns given by $x^{4}-y^{4}-2 x y\left(x^{2}-y^{2}\right)=z\left(X^{2}+Y^{2}\right)$
is considered and five different patterns of integral solutions are illustrated. A few interesting properties between the solutions and special number patterns are exhibited.

Method of analysis:

The biquadratic with five unknown is

$$
\begin{equation*}
x^{4}-y^{4}-2 x y\left(x^{2}-y^{2}\right)=z\left(X^{2}+Y^{2}\right) \tag{1}
\end{equation*}
$$

It is seen that (1) is satisfied by the quintuple ($\left.u+2 a b, u-2 a b, 16 u a b, 2 a^{2}-b^{2}, 2 a^{2}+b^{2}\right)$.

However, we have other patterns of solutions to (1) which are illustrated as follows.

Introduction of the transformations

$$
\begin{equation*}
x=u+v, \quad y=u-v, \quad z=8 u v \tag{2}
\end{equation*}
$$

in (1) leads to $\quad X^{2}+Y^{2}=2 v^{2}$

International Journal of Engineering, Science and Mathematics http://www.ijmra.us

We present below different methods of solving (3) and thus, in view of (2), one obtains different patterns of solution to (1).

Pattern:1

$$
\begin{equation*}
\text { Let } v=a^{2}+b^{2} \tag{4}
\end{equation*}
$$

Write 2 as

$$
\begin{equation*}
2=(1+i)(1-i) \tag{5}
\end{equation*}
$$

Using (4) and (5) in (3) and applying the methods of factorization, define

$$
\begin{aligned}
& X+i Y=(1+i)(a+i b)^{2} \\
& X-i Y=(1-i)(a-i b)^{2}
\end{aligned}
$$

Equating real and imaginary parts, we have

$$
\left.\begin{array}{l}
X=a^{2}-b^{2}-2 a b \\
Y=a^{2}-b^{2}+2 a b \tag{6}
\end{array}\right\}
$$

Using (4) in (2), it is seen that

$$
\left.\begin{array}{l}
x=u+a^{2}+b^{2} \\
y=u-a^{2}-b^{2} \tag{7}\\
z=8 u\left(a^{2}+b^{2}\right)
\end{array}\right\}
$$

Thus (6) and (7) represent the non-zero distinct integral solutions to (1).

International Journal of Engineering, Science and Mathematics http://www.ijmra.us

Properties:

(i) $z(x+y)$ is a sum of two squares.
(ii) 6 ! $(u, a, 1)-y(u, a, 1)+2 X(a, 1)+1_{-}^{-}$is a nasty number
(iii) $z(1, a, 1) \boldsymbol{\sum}(1, a, 1)+y(1, a, 1)_{-}^{-} t_{34, a} \equiv 1(\bmod 15)$
(iv) $x(1, a, 1)+y(1, a, 1)+z(1, a, 1)-t_{18, a} \equiv 3(\bmod 7)$
(v) $2 X(a, b)+2 Y(a, b)$ is a difference of two squares.
(vi) $X(2 a, 1)+Y(2 a, 1)-t_{3,4 a}+2 \equiv 0(\bmod 2)$
(vii) $z(a, a, 1)-3 C P_{a}^{16} \equiv 0(\bmod 6)$
(viii) $z\left(\alpha^{2}, \alpha^{2}, 1\right)-3 C P_{\alpha^{2}}^{16}$ is a nasty number
(ix) $x(u, n, 3)-y(u, n, 3)+X(n, 3)-2 C P_{12, n}+1 \equiv 0(\bmod 9)$
(x) $\quad y(-4 n,-1,2 n)+Y(-1,2 n)+C P_{16, n}=1$

$\underline{\text { Pattern: } 2}$

Write (3) as $\quad 2 v^{2}-Y^{2}=X^{2} * 1$

Write 1 as

$$
\begin{equation*}
X=2 a^{2}-b^{2} \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
1=(\sqrt{2}+1)(\sqrt{2}-1) \tag{10}
\end{equation*}
$$

Substituting (9) and (10) in (8) and employing the factorization method, define

$$
\sqrt{2} v+Y=(\sqrt{2} a+b)^{2}(\sqrt{2}+1)
$$

International Journal of Engineering, Science and Mathematics http://www.ijmra.us

Equating the rational and irrational parts，we get

$$
\begin{equation*}
Y=2 a^{2}+b^{2}+4 a b \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
v=2 a^{2}+b^{2}+2 a b \tag{12}
\end{equation*}
$$

Using（12）in（2），we have，

$$
\left.\begin{array}{l}
x=u+2 a^{2}+b^{2}+2 a b \\
y=u-2 a^{2}-b^{2}-2 a b \tag{13}\\
z=8 u\left(2 a^{2}+b^{2}+2 a b\right)
\end{array}\right\}
$$

Thus（9），（11）and（13）represent the non－zero distinct integral solutions to（1）．

Properties：

（i） 10 【（1，a，b）$-y(1, a, b)+z(1, a, b)+10_{-}^{-}$is a sum of two squares．
（ii） 6 （u，$a, 1)-y(u, a, 1)-1_{-}^{-}$is a nasty number．
（iii）$x\left(u, 1,2^{2 n}\right)-y\left(u, 1,2^{2 n}\right)=2 j_{4 n}+j_{2 n+2}+1$
（iv）$x\left(u, 1,2^{2 n+1}\right)-y\left(u, 1,2^{2 n+1}\right)=2 j_{4 n+2}+j_{2 n+3}+3$

（vi）$z \mathbb{4}, n, 1 \leftrightharpoons 6 C P_{n}^{17}+2 C P_{n}^{3}-12 t_{21, n}+2 t_{5, n} \equiv 0(\bmod 36)$
（vii）$z 《 1, n 〕 x 《 1, n 〕 y 《 1, n 〕 Y 《 n 〕 C P_{14, n} \equiv 0(\bmod 5)$
（viii）

$$
\llbracket \mathbb{4}, n, 1\rangle \bar{X} \llbracket, 1\rangle \llbracket 4, n, 1 \leftrightharpoons u \bar{Y} \llbracket, 1 〕 3 C P_{n}^{16}+C P_{24, n}+2 t_{3, n}-t_{4, n}=-1
$$

Pattern：3

Instead of（10），we write 1 as

International Journal of Engineering，Science and Mathematics http：／／www．ijmra．us

$$
1=\frac{(\sqrt{2}+1) \sqrt{2}-1)}{49}
$$

Following the procedure as presented in pattern 2，the corresponding non zero distinct integral solutions to（1）are obtained as

$$
\begin{aligned}
& x=u+7\left(0 A^{2}+5 B^{2}+2 A B\right. \\
& y=u-7\left(0 A^{2}+5 B^{2}+2 A B\right. \\
& z=56 u\left(0 A^{2}+5 B^{2}+2 A B\right. \\
& X=7\left(4 A^{2}-7 B^{2} .\right. \\
& Y=14 A^{2}+7 B^{2}+140 A B
\end{aligned}
$$

Properties：

（i）x 《，$A, 1 \leftrightharpoons y$ 《，$A, 1 〕 28 t_{3,2 A} \equiv 70(\bmod 84)$
（ii）x 【，$A, 1 \leftrightharpoons y$ 《，$A, 1 \subsetneq 28 t_{3,2 A}-14 t_{14, A} \equiv 0(\bmod 5)$
（iii）$X\left({ }^{2 n}, 2^{n} \overline{\bar{j}} 49 j_{4 n+1}-49 k y_{n}+98\left(l_{n}-1^{n}\right.\right.$ ，
（iv） \mid（v）$-y=7+Y_{2}^{2}$ is a nasty number

（vi）x 【 $n, 1 \doteqdot 4 C P_{29, n} \equiv 32(\bmod 44)$
（vii）x 《，1，nう $y(u, 1, n)-2 X$ 《 $n 〕 2 Y$ 《 $n \leftrightharpoons 14 C P_{28, n}+14 C P_{16, n}-28 t_{9, n} \equiv-2(\bmod 21)$
（viii）X 《，－1〕Y 《，－1う $42 C P_{n}^{26}-42 C P_{n}^{28}+21 C P_{n}^{4}+14 C P_{15, n}+14 t_{3, n} \equiv-8(\bmod 39)$
（ix）$x\left(1, n, n^{2}\right)+Y\left(, n^{2}, 144 F_{4, n, 5}+2 C P_{n}^{3}-6 t_{3, n} \neq 1\right.$

Pattern：4

Again，choosing 1 as

$$
1=\frac{9 \sqrt{2}+19 \sqrt{2}-1}{41^{2}}
$$

and repeating the process similar to pattern 2, the corresponding non-zero distinct integral solutions to (1) are found to be

$$
\begin{aligned}
& x=u+418 A^{2}+29 B^{2}+2 A B \\
& y=u-418 A^{2}+29 B^{2}+2 A B \\
& z=328 u A^{2}+29 B^{2}+2 A B \\
& X=412 A^{2}-41 B^{2} \\
& Y=41
\end{aligned} A^{2}+B^{2}+116 A B,
$$

Properties:

(i) $\frac{x(u, A, 1)-y(u, A, 1)-X(A, 1)+Y(A, 1)-1312 t_{3, A}-1640 t_{3, A+1}}{164} \equiv 4(\bmod 11)$
(ii) $z(1, A, B) \llbracket \rrbracket, A, B_{-}^{-} y \llbracket 1, A, B_{=}^{r}$ is a perfect square.
(iii) $x\left(1,2^{2 n}, 1\right)-y\left(1,2^{2 n}, 1\right)=829 j_{4 n+1}+j_{2 n+1}+59_{-}^{-}$
(iv) $x\left(1,2^{2 n+1}, 1\right)-y\left(1,2^{2 n+1}, 1\right)=829 j_{4 n+3}+j_{2 n+2}+57_{-}^{-}$
(v) $z\left(1,2^{2 n}, 1\right)=3289 j_{4 n+1}+j_{2 n+1}+59^{-}$
(vi) $z\left(1,2^{2 n+1}, 1\right)=3289 j_{4 n+3}+j_{2 n+2}+57_{-}^{-}$
(vii) $Y(n,-1)-41\left(t_{16, n}-C P_{24, n}+C P_{14, n}\right) \equiv 41(\bmod 4305)$
(viii) $X(n, 1)=41^{2}\left(C P_{4, n}+t_{6, n}-2 t_{4, n}-2 t_{3, n}-2\right)$
(ix) $x\left(u, n^{2}, 1\right)-y\left(u, n^{2}, 1\right)-X\left(n^{2}, 1\right)-41 t_{23, n}+C P_{26, n}+C P_{20, n}-10 t_{4, n}=3977$

International Journal of Engineering, Science and Mathematics

Pattern:5

Consider the transformations

$$
\begin{equation*}
x=u+v, \quad y=u-v, \quad z=4 u v, \quad X=p+q, \quad Y=p-q, \tag{14}
\end{equation*}
$$

Using(14) in (1),we have,

$$
p^{2}+q^{2}=2 v^{2}
$$

Which is satisfied by

$$
\begin{aligned}
& p=a^{2}-b^{2}-2 a b \\
& q=a^{2}-b^{2}+2 a b \\
& v=a^{2}+b^{2}
\end{aligned}
$$

Substitute the above values of p, q, v in (14), the non-zero distinct integral solutions to (1) are represented by

$$
\begin{aligned}
x & =u+a^{2}+b^{2} \\
y & =u-a^{2}-b^{2} \\
z & =4 u\left(a^{2}+b^{2}\right) \\
X & =2 a^{2}-2 b^{2} \\
Y & =-4 a b
\end{aligned}
$$

Properties:

(i) $X(1,3)-Y(1,3)+x(u, 1,3)-y(u, 1,3)$ is a perfect square
(ii) $6[x(u, a, b)-y(u, a, b)+X(a, b)]$ is a nasty number
(iii) $X(a, 1)-Y(a, 1)+x(1, a, 1)-y(1, a, 1)=8 t_{3, a}$
(iv) $z(u, a, b)\lceil(u, a, b)+y(u, a, b) \equiv 0(\bmod 8)$

International Journal of Engineering, Science and Mathematics

(v) $x(u, a, 1)-y(u, a, 1)+X(a, 1)+Y(a, 1)=2 t_{6, a}-2 a$
(vi) $Y(-a, a(a+1))=8 P_{a}^{5}$
(vii) $6 Y(-a, a-1)=4 S_{a}-4$
(viii) $Y(a, 1) \boldsymbol{\|}(u, a, 1)-u_{-}^{-} 6 C P_{a}^{8} \equiv 0(\bmod 5)$
(ix) $13 Y(a, 1) \boldsymbol{|}(u, a, 1)-u_{-}^{-} 24 C P_{a}^{13} \equiv 0(\bmod 80)$
(x) $Y(n, 1) \boldsymbol{\}(1, n, 1)-y(1, n, 1)+z(1, n, 1)_{-}^{-}+6 C P_{n}^{24} \equiv 0(\bmod 42)$
(xi) $X(1, n) Y(1, n)-3 C P_{n}^{16} \equiv 0(\bmod 3)$

Conclusion:

One may search for other patterns of integral solutions to (1) and their corresponding properties.

References:

[1]. Dickson. L.E., History of the Theory of Numbers, Vol 2:Diophantine Analysis, New York, Dover,2005.
[2]. Mordell, L.J, Diophantine Equations, Academic Press, London(1969).
[3]. Carmichael,R.D., The theory of numbers and Diophantine Analysis, New york, Dover,1959.
[4]. Lang, S.Algebraic N.T., Second ed. New York: Chelsea, 1999.
[5]. Weyl,H. Algebraic theoryof numbers, Princeton, NJ: Princeton University press, 1998.
[6]. Oistein Ore, Number Theory and its History, New York, Dover, 1988.
[7]. T.Nagell, Introduction to Number theory, Chelsa(New York)1981.
[8]. M.A.Gopalan and J.Kaliga Rani, Quartic equation in 5 unknowns
$x^{4}-y^{4}=2\left(z^{2}-w^{2}\right) p^{2}$, Bulletin of Pure and Applied Sciences, Vol28E(No:2), 2009, p:305-11.
[9]. M.A.Gopalan and J.Kaliga Rani, Quartic equations in 5 unknowns

$$
x^{4}-y^{4}=(z+w) p^{3}, \text { Bessel J.Math.,Vol. 1(1),2011, p:49-57. }
$$

[^0]: * Department of Mathematics, Shrimati Indira Gandhi College, Trichy- 620002.

