A FOCUS ON FIXED POINT THEOREM IN BANACH SPACE

Neena B. Gupta*

Abstract

In this paper we present a fixed point theorem with the help of self mapping which satisfy the contractive type of condition in Banach Space. Its purpose is to change the contractive condition by D.P. Shukla \& Shivkant Tiwari [4]

Keywords :

Fixed point, self maps, contraction mapping, Banach Space, Cauchy Sequence, Convex Set.

Introduction :

In (1979) Fisher gave the contractive condition for a mapping $S: X \rightarrow X$
$[d(S x, T y)]^{2} \leq \alpha d(x, S x) d(y, S y)+\beta d(x, S y) d(y, S x)$
For all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ and $0 \leq \alpha<1$ and $\beta \geq 0$
In 2012 D.P. Shukla [4] established a fixed point theorem satisfying the following condition

$$
\left[d(S x, S y]^{2} \leq \alpha \cdot \min \left[\begin{array}{l}
\frac{1}{5}\{d(x, S x) d(x, S y)+d(x, S y) d(y, S x)\}, \\
\frac{1}{5}\{d(x, S x) d(x, S y)+d(x, S x) d(y, S x)\}, \\
\frac{1}{5}\{d(x, S y) d(y, S x)+d(x, S x) d(y, S x)\}
\end{array}\right]\right.
$$

[^0]
Definition and Preliminaries:

- Banach Space: A normed linear space which is complete as a metric space is called a Banach Space.

Contacting Mapping: If (X, d) be a complete metric space. A mapping $\mathrm{S}: \mathrm{X} \rightarrow \mathrm{X}$ is
called a contacting mapping if there exists a real number α with
$0 \leq \mathrm{a}<1$ such that $\mathrm{d}(\mathrm{Sx}, \mathrm{Sy}) \leq \alpha \mathrm{d}(\mathrm{x}, \mathrm{y}) \leq d(x, y)$, for every $\mathrm{x}, \mathrm{y} \in \mathrm{X}$
Thus in a contracting mapping the distance between the images of any two pints is less then the distance between the points.

Fixed point : Let X be a non empty set and Let $\mathrm{S}: \mathrm{X} \rightarrow \mathrm{X}$, for all $x \in X$

Such that $S x=x, \quad$ for all $x \in X$
That is S maps X to itself.
Then x is called fixed point of the mapping S

Convex Set : A non empty subset X of a Bonach Space is said to be convex

$$
\text { if }(1-\alpha) x+\alpha y \in X, \text { for all } x, y \in X
$$

where α is any real such that $0 \leq \alpha<1$

Theorem :

Let X be a closed and convex subset of a Banach Space and let S be a self mapping of X into itself which satisfies the following condition :
$[d(S x, S y)]^{2} \leq \alpha \max \left[\begin{array}{c}\frac{1}{4} d(x, S x) d(x, S T x), \\ \frac{1}{4} d(x, S x) d(T x, S x), \\ \frac{1}{4} d(x, S T x) d(T x, S x),\end{array}\right]$, For all $\mathrm{x} \in \mathrm{X}$
And $y \in\{S x, T x, S T x\} \quad \& 0 \leq \alpha<1$
Where T is self mapping in X such that

$$
\begin{equation*}
T x=\frac{x+S x}{2} \ldots \tag{2}
\end{equation*}
$$

Then S has a fixed point
Proof- By the definition of metric space

$$
\begin{align*}
d(x, S x) & =\|x-S x\| \\
& =\|x+x-S x-x\| \\
& =2\left\|\frac{2 x-(S x+x)}{2}\right\| \\
& =2\left\|x-\frac{S x+x}{2}\right\| \\
& =2\|x-T x\| \\
& =2\|x-T x\|, b y(2) \\
& =2 \mathrm{~d}(\mathrm{x}, \mathrm{Tx}) \ldots \ldots \ldots . \tag{3}
\end{align*}
$$

$\operatorname{Now} \mathrm{d}(S x, T x)=\|S x-T x\|$

Again $\quad d(\mathrm{Sx}, \mathrm{Tx})=\frac{1}{2} d(x, S x)$

$$
=\frac{1}{2}[2 d(x, T x)], b y
$$

$$
\begin{equation*}
d(\mathrm{Sx}, \mathrm{Tx})=d(x, T x) . \tag{5}
\end{equation*}
$$

Now taking A $=2[(T x-S T x)+S T x]$

$$
\begin{align*}
& =2\left[\frac{\mathrm{x}+\mathrm{Sx}}{2}-\mathrm{STx}\right]+S T x \\
& =\mathrm{x}+\mathrm{Sx}-\mathrm{STx} \tag{6}
\end{align*}
$$

$$
\begin{align*}
& =\left\|S x-\frac{x+S x}{2}\right\|, b y(2) \\
& =\left\|\frac{S x-x}{2}\right\| \\
& =\frac{1}{2}\|x-S x\| \\
& =\frac{1}{2} d(x, S x) \tag{4}
\end{align*}
$$

$$
\begin{align*}
\text { Now d (A, STx }) & =\|A-S T x\| \\
& =\|x+S x-S T x-S T x\|, \text { by(6) } \\
& =\|2 T x-2 S T x\|, \text { by } 2 \\
& =\|x+S x-S T x-S T x\|, \text { by(6) } \\
& =\|2 T x-2 S T x\|, \text { by } 2 \\
& =2\|T x-S T x\| \\
& =2 d(T x, S T x) \\
& =2.2 d(T x, T T x), \text { by(} 3) \\
& =4 d\left(T x, T^{2} x\right) \ldots \ldots \ldots \ldots \ldots . ~ \tag{7}
\end{align*}
$$

Now $d(A, S T x) \leq d(A, S x)+d(S x, S T x)$, by triangular Inequality

$$
\begin{aligned}
& =\|A-S x\|+d(S x, S T x) \\
& =\|x+S x-S T x-S x\|+d(S x, S T x), b y(6) \\
& =\|(x-S x)+(S x-S T)\|+d(S x, S T x) \\
& \leq\|x-S x\|+\|S x-S T x\|+d(S x, S T x) \\
& =d(x, S x)+d(S x, S T x)+d(S x, S T x) \\
& =d(x, S x)+2 d(S x, S T x)
\end{aligned}
$$

$$
\begin{equation*}
\Rightarrow d(A, S T x) \leq d(x, S x)+2 d(S x, S T x) . \tag{8}
\end{equation*}
$$

By (7) \& (8)

$$
\begin{align*}
\begin{aligned}
4 d & \left(T x, T^{2} x\right) \leq d(x, S x)+2 d(S x, S T x) \\
= & 2 d(x, T x)+2 d(S x, S T x), B y \\
= & 4 d\left(T x, T^{2} x\right) \leq 2 d(x, T x)+2 d(S x, S T x) \\
& 2 d\left(T x, T^{2} x\right) \leq d(x, T x)+d(S x, S T x) \ldots . . .
\end{aligned}
\end{align*}
$$

Now from (1)
$[d(S x, S y)]^{2} \leq \alpha \cdot \max \left[\begin{array}{l}\frac{1}{4} d(x, S x) \cdot d(x, S T x), \\ \frac{1}{4} d(x, S x) \cdot d(T x, S x), \\ \frac{1}{4} d(x, S T x) \cdot d(T x, S x)\end{array}\right]$

$$
\begin{aligned}
& \Rightarrow d(S x, S T x) \leq \alpha . \max \left[\begin{array}{l}
\frac{1}{4} d(x, S x)[d(x, S x)+d(S x, S T x), \\
\frac{1}{4} d(x, S x) \frac{1}{2}(x, S x), \\
\frac{1}{4}[d(S x, T x)(d(x, S x)+d(S x, S T x)
\end{array}\right] \\
& \text { ByTriangular Inequality \& By (4) \& } y=T x \\
& =\alpha \cdot \max \left[\begin{array}{l}
\frac{1}{4}\left[\left(d(x, S x)^{2}+d(x, S x) d(S x, S T x)\right],\right. \\
\frac{1}{8}[d(x, S x)]^{2} \\
\frac{1}{4}\left[\frac{1}{2} d(x, S x)[d(x, S x)+d(S x, S T x)]\right.
\end{array}\right] \\
& =\alpha \cdot \max \left[\begin{array}{l}
\frac{1}{4}\left[(d(x, S x)]^{2}+d(x, S x) d(S x, S T x),\right. \\
\frac{1}{2}\left[\frac{1}{4}(d(x, S x))^{2}\right], \\
\frac{1}{8}\left\{[d(x, S x)]^{2}+d(x, S x) d(S x, S T x)\right\}
\end{array}\right] \\
& =\alpha \max \left[\begin{array}{l}
\left.2\left[\frac{1}{8}(d(x, S x)]^{2}+\frac{1}{8} d(x, S x) d(S x, S T x)\right]\right], \\
\frac{1}{8}(d(x, S x)]^{2}, \\
\frac{1}{8}\left(d(x, S x)^{2}+\frac{1}{8} d(x, S x) d(S x, S T x)\right.
\end{array}\right] \\
& =\alpha \cdot 2\left[\frac{1}{8}[d(x, S x)]^{2}+\frac{1}{8} d(x, S x) d(S x, S T x)\right] \\
& =\frac{\alpha}{4}\left[[d(x, S x)]^{2}+d(x, S x) d(S x, S T x)\right] \\
& =>4[d(S x, S T x)]^{2} \leq \alpha\left[[d(x, S x)]^{2}+d(x, S x) d(S x, S T x)\right] \\
& =>4[d(S x, S T x)]^{2}-\alpha d(x, S x) d(x, S T x)-\alpha[d(x, S x)]^{2} \leq 0
\end{aligned}
$$

Which is quadratic equation
Then by the solution for equation $a x^{2}+b x+c=0$ is given by
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Hence $d(S, S T x)-\frac{\alpha(x, S x) \pm \sqrt{\alpha^{2}[d(x, S x)]^{2}+16 \alpha\left(d[(x, S x)]^{2}\right.}}{2 \times 4} \leq 0$
$\mathrm{d}($ S, STx $)-\frac{\alpha(x, S x) \pm d(x, S x) \sqrt{\alpha^{2}+16 \alpha}}{8} \leq 0$
$\mathrm{d}($ S, STx $)-\frac{2 d(x, T x)\left[\alpha+\sqrt{\alpha^{2}+16 \alpha}\right.}{8} \leq 0$
$\mathrm{d}(\mathrm{S}, \mathrm{STx})-\frac{d(x, T x)\left[\alpha+\sqrt{\alpha^{2}+16 \alpha}\right.}{4} \leq 0$, by(3), on taking $(+v e)$ sign
$\mathrm{d}(\mathrm{Sx}, \mathrm{STx})-\varsigma \mathrm{d}(\mathrm{x}, \mathrm{Tx}) \leq 0$
$d(S x, S T x) \leq \varsigma d(x, T x)$.
Where $\varsigma=\frac{\alpha+\sqrt{\alpha^{2}+16 \alpha}}{4}$
Where $0 \leq \varsigma<1$
Because if $\varsigma<1$ then $\frac{\alpha+\sqrt{\alpha^{2}+16 \alpha}}{4}<1$
$=>\alpha+\sqrt{\alpha^{2}+16 \alpha}<4$
$=>\sqrt{\alpha^{2}+16 \alpha}<4-\alpha$
$=>\alpha^{2}+16 \alpha<(4-\alpha)^{2}$
$=>\alpha^{2}+16 \alpha<16+\alpha^{2}-8 \alpha$
$\Rightarrow 24 \alpha<16 \quad \Rightarrow \alpha<\frac{16}{24} \quad \Rightarrow \alpha<0.66<1 \quad \Rightarrow \alpha<1$
Hence $\varsigma<1$
And also $0 \leq \alpha \quad \Rightarrow \quad 0 \leq \varsigma$ Hence $0 \leq \varsigma<1$
Now by (9) \& (10)
$2 d\left(T x, T^{2} x\right) \leq d(x, T x)+\varsigma d(x, T x)=(1+\varsigma) d(x, T x)$
$d\left(T x, T^{2} x\right) \leq \frac{(1+\varsigma)}{2} d(x, T x)$
Similarly

$$
\begin{aligned}
d\left(T^{2} x, T^{3} x\right) & \leq \frac{(1+\varsigma)}{2} d\left(T x, T^{2} x\right) \\
& \leq \frac{(1+\varsigma)}{2} \frac{(1+\varsigma)}{2} d(x, T x)=\left(\frac{1+\varsigma}{2}\right)^{2} d(x, T x)
\end{aligned}
$$

Similarly we can find
$d\left(T^{3} x, T^{4} x\right) \leq\left(\frac{1+\varsigma}{2}\right)^{3} d(x, T x)$
and $\quad d\left(T^{4} x, T^{5} x\right) \leq\left(\frac{1+\varsigma}{2}\right)^{4} d(x, T x)$
\qquad
\qquad
$d\left(T^{n} x, T^{n+1} x\right) \leq\left(\frac{1+\varsigma}{2}\right)^{n} d(x, T x)$.
$\because \varsigma<1 \quad \Rightarrow 1+\varsigma<2 \quad \Rightarrow \frac{(1+\varsigma)}{2}<1$
Then $\lim _{n \rightarrow \infty}\left(\frac{1+\varsigma}{2}\right)^{n}=0$
\therefore from euqtion (11) $d\left(T^{n} x, T^{n+1} x\right) \rightarrow 0$ as $n \rightarrow \infty$
$d\left(T^{n} x, T^{n+1} x\right)<\varepsilon$ for $\varepsilon>0$ as $n \rightarrow \infty$
$\therefore\left\{T^{n} x\right\}_{n=1}^{\infty} \quad$ is a Cauchy Sequence in X . (By the defination of Cauchy Sequence)
But X is a Banach Space. Then by the property of completeness
$\therefore\left\{T^{n} x\right\}_{n=1}^{\infty}$ is a convergent sequence in X, which converges to a fixed point.
Let there exists a point ω in X such that $\lim _{n \rightarrow \infty} T^{n} x=\omega$.
Now consider $\mathrm{d}(\omega, S \omega) \leq d\left(\omega, T^{n+1} \omega\right)+d\left(T^{n+1} \omega, S \omega\right)$ by triangular, Inequality

$$
\begin{aligned}
& =d\left(\omega, T^{n+1} \omega\right)+d\left(T T^{n} \omega, S \omega\right) \\
& =d\left(\omega, T^{n+1} \omega\right)+\left\|T T^{n} \omega-S \omega\right\|
\end{aligned}
$$

International Journal of Engineering, Science and Mathematics

 http://www.ijmra.us$$
\begin{aligned}
& =d\left(\omega, T^{n+1} \omega\right)+\left\|\frac{1}{2}\left(T^{n} \omega+S T^{n} \omega\right)-S \omega\right\|, \text { by }(2) \\
& =d\left(\omega, T^{n+1} \omega\right)+\left\|\frac{1}{2} T^{n} \omega-\frac{1}{2} S \omega+\frac{1}{2} S T^{n} \omega-\frac{1}{2} S \omega\right\| \\
& \leq d\left(\omega, T^{n+1} \omega\right)+\frac{1}{2}\left\|S T^{n} \omega-S \omega\right\|+\frac{1}{2}\left\|T^{n} \omega-S \omega\right\| \\
& =d\left(\omega, T^{n+1} \omega\right)+\frac{1}{2} d\left(S T^{n} \omega, S \omega\right)+\frac{1}{2} d\left(T^{n} \omega, S \omega\right) \\
& =d\left(\omega, T^{n+1} \omega\right)+\frac{1}{2}\left(d\left(T^{n} \omega, S \omega\right)+d\left(S \omega, S T^{n} \omega\right)\right) \\
& =d\left(\omega, T^{n+1} \omega\right)+\frac{1}{2}\left(d\left(T^{n} \omega, S T^{n} \omega\right)\right) \\
& =d\left(\omega, T^{n+1} \omega\right)+d\left(T^{n} \omega, T T^{n} \omega\right), \text { by }(3) \\
& =d\left(\omega, T^{n+1} \omega\right)+d\left(T^{n} \omega, T^{n+1} \omega\right) \\
& =d\left(\omega, T^{n+1} \omega\right)+d\left(T^{n+1} \omega, T^{n} \omega\right) \\
& =d\left(\omega, T^{n} \omega\right) \\
& =d\left(\omega, T^{n} \omega\right) \because X \text { is convex. }
\end{aligned}
$$

$=>d(\omega, S \omega) \leq d\left(\omega, T^{n} \omega\right)$
As $n \rightarrow \infty \quad$ then $d\left(\omega, T^{n} \omega\right) \rightarrow 0$, by (12)
$\therefore d(\omega, S \omega) \leq 0 \quad \Rightarrow S \omega=\omega$
$\therefore S$ has a fixed point ω in X

References:

[1] Bajaj N., 2001. A fixed point theorem in Banach space:
Vikram Mathematical Journal, 21:7-10.
[2] Chaubey A.K. and Sahu D.P., 2011. Fixed point of contraction type mapping in Banach space. Napier Indian Advanced Research Journal of Science, 6:43-46.
[3] Ciric Lj., 1977. Quasi-Contractions in Banach space: Publ. L'Instt. Math. (N.S.), 21(35):41-48.
[4] D.P., Shukla, 2012, Fixed point theorem in Banach Space, Indian J.Sci. Res. 3(1):177-178
[5] Fisher B., 1979. Mappings with a common fixed point: Math Sem. Notes, Kobe Unive., 7:81-84.

[^0]: * Asst. Prof. of Mathematics, Career College, Bhopal, M.P., India

