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    Abstract 

 In this paper, attempt to study effects of outliers on two estimators of finite population total 

theoretically and by simulation is made. We compare the ratio estimate with the local linear 

polynomial estimate of finite population total given different finite populations. Both classical 

and the non parametric estimator based on the local linear polynomial produce good results when 

the auxiliary and the study variables are highly correlated. It is however noted that in the 

presence of outlying observations the local linear polynomial perform better with respect to 

design mean square error (MSE). The non parametric regression estimator based on the local 

linear polynomial emerges as a better estimator than the ratio estimator in most cases.  
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1. Introduction.  A statistician working on any set of data needs to test outliers with a view of 

rejecting, accommodating or incorporating them. Rejection of an outlier depends on a variety of 

factors relating to the statistician’s interest in the practical situation which may call for the 

removal or replacement of the discordant data after which he proceeds to analyze the residual or 

modified data on the original model. It must be borne in mind that once an outlier is rejected, the 

sample is no longer random but censored.  

 

If however the existence of the auxiliary information is discovered in the course of study, then it 

can be made use of by proposing an estimator. Let Y and X be the population means of iY  and 

iX  respectively, then R is the ratio of Y to X in the population such that: 
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            3.1.1.2  

where, R̂  is an estimator of R, iy and ix  are the study variable for the i
th

 unit in the sample and 

auxiliary variable for the i
th 

unit in the sample respectively. 

The ratio estimator of the population mean is; 
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      3.1.1.3  

 For population totals the ratio estimators are; 

     
ˆˆ ˆ

R RY NY RX              3.1.1.4  

The ratio estimator is normally a biased estimator and its bias is determined by;  
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To obtain bias R̂ , one may proceed as follows. 

Let             
- 1ˆ - - -

y y Rx
R R R y Rx

x x x
                 3.1.1.5 
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Let  
n

f
N

  be the sampling fraction and   
-N n

nN
  be the finite population correction factor. 

Then; 
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           3.1.1.6 

 Where the correlation coefficient   between iy  and ix  in the finite population is defined by the 

equation 
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and yx y xS S S is the covariance between iy  and ix .  

      Hence 

  
     21-ˆ ˆ   -R x x y

f
Bias Y X Bias R RS S S

nX
         3.1.1.7 

       

2. Assumptions for proof of theoretical results. We outline the assumptions and prove the 

theoretical properties 

3.1.1 Distribution of the errors under ξ: the errors i  are independent and have mean zero, variance 

 iv x and compact support, uniformly for all N. 

3.1.2 For each N, the ix are considered fixed with respect to the super population model ξ. The ix  are 

independent and identically distributed    
-

x
F x f t dt


  , where  .f is a density with compact 

support  ,x xa b and    0f x   for all  ,x xx a b . 

3.1.3 Mean and variance functions  .m ,  v x on ,x xa b : the mean function  .m  is continuous and 

has 1p  continuous derivatives, and the variance function  v x is continuous and strictly 

positive. 

3.1.4 Kernel K: the kernel K has compact support [-1, 1], is symmetric and continuous, and satisfies 
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3.1.5 Sampling rate 
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3.1.7 Additional assumptions for higher order inclusion probabilities:  
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   where t,ND  denotes the set of all distinct t-turples  1 2, ,..., ti i i  from NU  

 3. Asymptotic Design Unbiasedness and Consistency. The price for using m̂ ’s in place of im ’s 

in the generalized difference estimator (3.2.2.5) is design bias. The estimator ˆ
yt  is, however, 

asymptotically design unbiased and design consistent under mild conditions, as the following 

theorem demonstrates; 

Theorem 1. Assume 1-7. The local polynomial regression estimator 
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Then 
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Under assumptions 1-6 and using the fact that  
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By Lemma 2(iv), the first term on the right of (3.4.2.1) converges to zero as N  , following 

the argument of Theorem 1 in Robinson and Sarndal (1983). Under assumption 6, 
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Combining this with Lemma 4, the second term on the right of (3.2.5.1) converges to zero as 

N  , and the theorem follows. 

 

3 Asymptotic Mean Squared Error. In this section we derive an asymptotic approximation to 

the mean squared error of the local polynomial regression estimator and propose a consistent 

variance estimator.  
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Then 
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which completes the proof. 

Next we show that the asymptotic mean squared error in theorem 2 can be estimated consistently 

under mild assumptions. 

Theorem 3.  

Assume 1-7. Then      1 1ˆ ˆ ˆlim 0N P y y
N

n E V N t AMSE N t 


   

where 

                                                             1

2
,

-1ˆ ˆ ˆ ˆ- -

N

ij i j i j

y i i j j
i j iji j U

I I
V N t y m y m

N

  

  





   

and 

                                                               1

2
,

-1
ˆ - -

N

ij i j

y i i j j
i ji j U

AMSE N t y m y m
N

  

 





   



               IJESM            Volume 2, Issue 2             ISSN: 2320-0294 
_________________________________________________________         

A Quarterly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories 
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell’s Directories of Publishing Opportunities, U.S.A. 

International Journal of Engineering, Science and Mathematics 

http://www.ijmra.us 

 
167 

June 

2013 

Therefore,  1ˆ
ŷV N t  is asymptotically design unbiased and design consistent for 

 1
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which converges to zero as N   by 7. The Cauchy-Schwarz inequality may then be applied 

to show that 2 0Na  as N  , and it follows that 0NA  as N  . 

    4. Outlier Robust Estimation.  As the proof of theorem 5 indicates, the local polynomial 

regression estimate is robust in      the sense of asymptotic attainment of the Godambe –Joshi 

lower bound. However since the estimator is based on least squares, it is susceptible to the 

effects of observations with unusual response values (outliers). If an observed iy  is sufficiently 

far from the bulk of the observed responses for nearby values of x ,  m̂ x will be drawn towards 

the unusual response and away from the majority of the points. Alternative criteria Lowess 

(Cleveland, 1979), and its successor loess (Cleveland and Delvin, 1988) are nearest neighbor-

based local polynomial estimators that allow the data analyst to down weight the effect of 

unusual observations. This is done through an iterative process. An ordinary local polynomial 

estimate is first calculated. Observations then have weights  1 2,...,  attached to them, where 

the weights decrease smoothly as the absolute residual from the loess fit increases. The updated 

estimate is then the local polynomial estimate with weights W , where  1 2,...,diag    .The 

process is then iterated several times. Unfortunately, as Machler (1989) noted, since the original 

residuals are based on the ordinary non robust loess fit, the robust version can still be sensitive to 

outliers. The p
th 

order local polynomial regression is based on minimizing 
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Some authors have suggested the related approach of using a local version of M-estimation 

which attempts to achieve robustness by replacing 3.4.1 by 

 0
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         3.2.9.2 

 . is chosen to down weight outliers. This is accomplished by choosing  .  to be symmetric 

with a unique minimum at zero, so that its derivative  .  is bounded. Minimization of 3.4.2 

requires iterative procedure which is stopped after one or two steps, (Fan and Jiang, 1999). 

However since the iterations start at the least squares local polynomial estimator, the estimator is 

still potentially sensitive to outliers. True robustness requires an estimator that is not based on the 

least squares estimator. 

Wang et al (1994) investigated the Least Absolute Values (LAV) version of 3.4.2 estimating 

 .m  by minimizing 
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         3.2.9.3 

We investigate the conditional breakdown of 3.2.9.3 and its robustness 

 3.8. Determining the Conditional Breakdown . From definitions l and m : Breakdown of 

an estimator is the smallest fraction of outliers that can force the estimators to arbitrary values, 

and is thus the measure of the resistance of the estimator to unusual values. Breakdown point of 

an estimator  is defined to be    min ; ; , ,  inf
m

bias m y X is inite
n

   
  

 
 

where  ; , ,bias m y X  is the maximum bias that can be caused by replacing any m of the 

original data points by arbitrary values, (Donoho and Huber, 1983). Any estimator that is not at 

all resistant to outliers, such as one based on least squares has breakdown
1

n
. Since the local 

polynomial regression estimate  ˆ .m  is implemented by solving many local regression problems, 

each centered at an evaluation point x , its breakdown properties are defined on a local level as 

well. We restrict ourselves to kernel functions  .K that are positive on a bounded interval [-1, 

1]. Conditional breakdown implies that unlike for parametric models, the breakdown point 

changes depending on the evaluation point of x . 
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3.8.2. Breakdown based on least absolute values-LAV. In order to describe the breakdown 

properties of local LAV regression estimators, we first must consider the breakdown point of the 

weighted LAV regression problem involving the observations for which the weights are positive. 

The weights that are used in each of the local regression problems are determined by the selected 

kernel function and bandwidth, i.e. -1 -i
i

x x
w h K

h

 
  

 
. Since the breakdown is based on a set of 

weighted LAV regressions, it depends at any evaluation point on both the local distribution of 

the predictor values and the kernel used.  

 

While the local distribution of predictors is typically beyond the control of the data analyst, the 

choice of kernel is not, leaving open the possibility that it might be chosen in such a way as to 

make the estimator as robust as possible. At an evaluation point, the bandwidth used determines 

the set of observations within the local regression. This suggests that the bandwidth could be 

chosen so as to maximize robustness in some sense, but this is a mistaken conclusion. Wang and 

Scott derived the bandwidth that minimizes the asymptotic average mean squared error of 

m̂ showing that it satisfies 
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       3.2.9.4 

Where f is the density of the errors (taking x to be uniform on [0, 1] and assuming constant 

variance for the errors).  

 

Thus the optimal choice of h depends on the curvature of m and the density of ε , and cannot be 

set arbitrarily so as to ensure robustness. Equation 3.5.2.1 assumes use of a uniform kernel. If a 

different kernel is used, the bandwidth must be adjusted. Wang and Scott showed that the 

equivalent bandwidth when using a kernel 2K   rather 1K  than satisfies     

 
 

1

2
2

2 1
1

( )
( )

opt opt

V K
h K h K

V K

 
  

 
     3.2.9.5 



               IJESM            Volume 2, Issue 2             ISSN: 2320-0294 
_________________________________________________________         

A Quarterly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories 
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell’s Directories of Publishing Opportunities, U.S.A. 

International Journal of Engineering, Science and Mathematics 

http://www.ijmra.us 

 
171 

June 

2013 

Where  V K is the variance of the kernel,  2x K x dx . The table below is a list of commonly 

used kernels. The interpretation of the table is that, for example, if bandwidth h yields an 

appropriate amount of smoothing when using uniform kernel, the bandwidth 1.291 h is the 

appropriate choice when using a quadratic kernel. Thus, any comparisons of robustness across 

kernels corrects for this scale effect by using equivalent bandwidths. 

 

Table 1. Multipliers to give equivalent bandwidths for different kernels 

 

Kernel Formula Variance Multiplier 

Uniform 1

2
 

1

3
 

1.000 

Quadratic 
 23
1-x

4
 

1

5
 

1.291 

Biweght 
 

2
215

1-x
16

 
1

7
 

1.528 

Triweight 
 

3
235

1-x
32

 
1

9
 

1.732 

Tricube 
 

3
370

1- x
81

 
0.1440329 1.521 

 

The robustness of any kernel choice at an evaluation point is evaluated in two ways. First we use 

the breakdown value, the smallest number of observations that can force the estimator to 

arbitrary values. Here we do not use the breakdown point, (the proportion of observations in the 

span of the kernel that can force the estimator to arbitrary values).This is because the number of 

observations in the span depends on the appropriate multiplier for the bandwidth for the chosen 

kernel. Suppose the bandwidth used at evaluation point x using a uniform kernel includes 

 u x observations, with breakdown point  u x , then the smallest number of observations that 

could possibly break down the estimate at x using the uniform kernel is    [ ]u un x x .  

 

On the other hand, if a quadratic kernel was used, the bandwidth would be 29.1% larger at x  

yielding  qn x observations in the span of the kernel, with  qn x probably larger than  un x . 
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The smallest number of observations that could possibly break down the estimate at x using the 

quadratic kernel is    q qn x x 
  ,where  q x , is the breakdown point at x when using the 

quadratic kernel. The choice of kernel is up to the data analyst, so the preferred choice on the 

basis of breakdown would be the one with larger value of    n x α x , ( the breakdown value), 

not larger than  α x ,(the breakdown point). This argument shows that breakdown value is not 

sufficient to describe resistance in the nonparametric regression context.  

 

Since the breakdown value is an increasing function of the number of observations in the span of 

the kernel, kernels with  larger equivalent bandwidths (such as the triweight) have advantage 

over kernels with smaller equivalent bandwidths (such as the uniform) in terms of breakdown 

value. For this reason we examine a second measure of breakdown. For a given kernel, say there 

are  n x observations in the span of the kernel at evaluating point x , and the breakdown value at 

that point is  b x . The estimator cannot break down at x if the number of outliers within the 

span of the kernel is less than  b x , so the probability that the estimator will not break down at 

x is 

 

pr(Estimator cannot break down at x ) 

 

 
1

0

         

b x

j

P j of the observations in the span are outliers





   

 

Say there are k outliers in the sample, and they are spread randomly over the observations in the 

sample. Then the probability that j of the observations in the span of the kernel is outliers is 

hypergeometric, 

 

-

( ) -
        

( )

k n k

j n x j
P j of the observations in the span are outliers

n

n x

  
  
  


 
 
 

, with 0 j k   .  
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Note that if  k b x  , the estimator cannot possibly break down at x, but as k gets larger, the 

probability of having too many outliers in the span of the kernel increases, decreasing the 

probability that the estimator cannot beak down. We note that a smaller bandwidth makes it more 

likely that the estimator cannot break down, since there are fewer observations in the span of the 

kernel, implying an advantage for kernels with smaller equivalent bandwidths. These two 

measures quantify a tradeoff between choosing kernels using smaller bandwidths and those using 

larger bandwidths. 

    4. Empirical Study 

 

We have considered a natural population taken from the Kenya National Bureau of Statistics, 

Statistical Abstract 2002. The data is based on wage employment by industry for 100 units. The 

data for the year 2000 provided the auxiliary variable while that of the year 2001 provided the 

study variable. The population data with outliers is as a result of deliberate key punch errors on a 

number of data points from this natural population. For these two sets of data, we have drawn 

random samples of size 20 and 30, and replicated the experiments 500 times.   

We used three different bandwidth 0.1h  , 0.25h   and 0.5h  for the non parametric 

estimator. The first band width is equal to the post stratum width while the second is based on an 

ad hoc rule of 1
4

th the data range. The third band width has been incorporated to help verify 

robustness.  

 

   

      4.3 Results 

 

4.3.6 Relative MSE of the ratio estimator to the local linear polynomial estimator (Natural 

population and Population with outliers) 

 

 

 

 Relative Mean Square Error 
 

h n=20 n=30 

Natural 0.1 0.4629 0.8762 
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population 0.25 0.5784 0.7925 

0.5 0.8646 0.9676 

Population with 

outliers 

0.1 18.747 13.44 

0.25 4.196 2.805 

0.5 1.1324 0.5281 

 

4.4 Discussion of results.  It is clear that the ratio estimator performs better than the local linear 

polynomial estimator when the population is natural irrespective of the variance used. The local 

linear polynomial regression estimator turns out to be a better estimator when the population 

contains outliers. It becomes even more robust when the sample size is increased giving room for 

the presence of more outliers. The relative mean square errors decrease as the bandwidths 

increase from 0.1 to 0.5 which implies robustness of the local linear polynomial regression 

estimator when the Quadratic Kernel is combined with a smaller bandwidth.  

4.5. Conclusion. From the results obtained we conclude that the choice of an appropriate 

estimator of finite population totals is important. The ratio estimator will be very useful when the 

variables are highly correlated such that their graph is a line through the origin. The local linear 

polynomial  is a more appropriate estimator of population total when combined with a smaller 

bandwidth than the parametric ratio estimator. 
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