ON THE CUBIC EQUATION WITH FIVE UNKNOWNS

$$
3\left(x^{3}-y^{3}\right)=z^{3}-w^{3}+12 t^{2}+4
$$

M.A.Gopalan*

S. Vidhyalakshmi*

N.Thiruniraiselvi*

Abstract

The non-homogeneous Cubic Equation with five unknowns represented by $3\left(\mathrm{x}^{3}-\mathrm{y}^{3}\right)=\mathrm{z}^{3}-\mathrm{w}^{3}+12 \mathrm{t}^{2}+4$ is analyzed for its patterns of non-zero integral solutions. Six different patterns of non-zero distinct integer solutions are obtained. A few interesting properties between the solutions and special number patterns namely Polygonal numbers, Centered Polygonal numbers, Pyramidal numbers, Stella Octangular numbers, Star numbers and Pentatope number are exhibited.

KEY WORDS

Cubic Equation with Five Unknowns, Integral solutions
MSC Subject Classification: 11D25

[^0]
INTRODUCTION

Integral solutions for the homogeneous (or) non homogeneous Diophantine cubic equation is an interesting concept as it can be seen from [1, 2, 3]. In [4-9] a few special cases of cubic Diophantine equation with 4 unknowns are studied. In [10, 11], cubic equations with 5 unknowns are studied for their integral solutions. In this communication we present the integral solutions of an interesting cubic equation with 5 unknowns $3\left(x^{3}-y^{3}\right)=z^{3}-w^{3}+12 t^{2}+4$. A few remarkable relations between the solutions are presented.

NOTATIONS USED

- $\mathrm{t}_{\mathrm{m}, \mathrm{n}}$ - Polygonal number of rank n with size m .
- $P_{n}^{m} \quad$ - Pyramidal number of rank n with size m.
- $\mathrm{ct}_{\mathrm{m}, \mathrm{n}}$ - Centered polygonal number of rank n with size m .
- gn_{a} - Gnomonic number of rank a
- so_{n} - Stella octangular number of rank n
- $\mathrm{s}_{\mathrm{n}} \quad$ - Star number of rank n
- $\operatorname{pr}_{\mathrm{n}} \quad$ - Pronic number of rank n
- pt_{n} - Pentatope number of rank n

METHOD OF ANALYSIS

The Cubic Diophantine equation with five unknowns to be solved for getting non-zero integral solutions is

$$
\begin{equation*}
3\left(x^{3}-y^{3}\right)=z^{3}-w^{3}+12 t^{2}+4 \tag{1}
\end{equation*}
$$

On substituting the linear transformations

$$
\begin{equation*}
\mathrm{x}=\mathrm{c}+1, \mathrm{y}=\mathrm{c}-1, \mathrm{z}=\mathrm{a}+1, \mathrm{w}=\mathrm{a}-1 \tag{2}
\end{equation*}
$$

in (1), it leads to

$$
\begin{equation*}
3 c^{2}=a^{2}+2 t^{2} \tag{3}
\end{equation*}
$$

In what follows, we present six ways of solving (3) and in view of (2), six different solutions patterns to (1) are obtained.

PATTERN-1

Take $\mathrm{c}=\mathrm{p}^{2}+2 \mathrm{q}^{2}$
Write 3 as $3=(1+i \sqrt{2})(1-i \sqrt{2})$
Substituting (4) \& (5) in (3) and using the method of factorization, define

$$
\begin{equation*}
(a+i \sqrt{2} t)=(1+i \sqrt{2})(p+i \sqrt{2} q)^{2} \tag{6}
\end{equation*}
$$

Equating the real and imaginary parts of (6), we get

$$
\begin{equation*}
a(p, q)=p^{2}-2 q^{2}-4 p q \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{t}(\mathrm{p}, \mathrm{q})=\mathrm{p}^{2}-2 \mathrm{q}^{2}+2 \mathrm{pq} \tag{8}
\end{equation*}
$$

Substitute (4) \& (7) in (2) ,the integral solutions of (1) are given by

$$
\begin{aligned}
& \mathrm{x}(\mathrm{p}, \mathrm{q})=\mathrm{p}^{2}+2 \mathrm{q}^{2}+1 \\
& \mathrm{y}(\mathrm{p}, \mathrm{q})=\mathrm{p}^{2}+2 \mathrm{q}^{2}-1 \\
& \mathrm{z}(\mathrm{p}, \mathrm{q})=\mathrm{p}^{2}-2 \mathrm{q}^{2}-4 \mathrm{pq}+1 \\
& \mathrm{w}(\mathrm{p}, \mathrm{q})=\mathrm{p}^{2}-2 \mathrm{q}^{2}-4 \mathrm{pq}-1 \\
& \mathrm{t}(\mathrm{p}, \mathrm{q})=\mathrm{p}^{2}-2 \mathrm{q}^{2}+2 \mathrm{pq}
\end{aligned}
$$

PROPERTIES:

- $x(1, q)-z(1, q)=8 t_{3, q}$
- $\mathrm{t}(\mathrm{p}, \mathrm{p}+1)-\mathrm{w}(\mathrm{p}, \mathrm{p}+1)=\mathrm{ct}_{12, \mathrm{p}}$
- $\mathrm{t}(\mathrm{p}, \mathrm{p}-1)-\mathrm{w}(\mathrm{p}, \mathrm{p}-1)=\mathrm{s}_{\mathrm{p}}$
- $\mathrm{x}(\mathrm{p}, 1)+\mathrm{t}(\mathrm{p}, 1)-1=2 \mathrm{pr}_{\mathrm{p}}$
- $2 t(2 p, 1)-x(2 p, 1)-y(2 p, 1)=8 g n_{p^{2}}$

Each of the following represents a nasty number
a) $3\{\mathrm{x}(\mathrm{p}, \mathrm{p})-\mathrm{z}(\mathrm{p}, \mathrm{p})\}$
b) $3\{y(p, p)-w(p, p)\}$
c) $t(p, p)-w(p, p)-1$
d) $\mathrm{t}(\mathrm{p}, \mathrm{p})-\mathrm{z}(\mathrm{p}, \mathrm{p})+1$
e) $6\{2 t(3 p, p)-x(3 p, p)-y(3 p, p)\}$

PATTERN-2:

In equation (5), Writing 3 as $3=\frac{(5+i \sqrt{2})(5-i \sqrt{2})}{9}$
The corresponding values of a and t satisfying (3) are

$$
\begin{align*}
& a(p, q)=\frac{1}{3}\left(5 p^{2}-10 q^{2}-4 p q\right) \\
& t(p, q)=\frac{1}{3}\left(p^{2}-2 q^{2}+10 p q\right) \tag{9}
\end{align*}
$$

International Journal of Engineering, Science and Mathematics

Since our aim is to find the integral solutions, it is seen that a and t are integers for suitable choices of p and q .

CHOICE -1:

$$
\text { Let } \quad \mathrm{p}=3 \mathrm{P}, \mathrm{q}=3 \mathrm{Q}
$$

The corresponding integral solutions of (1) are obtained as below

$$
\begin{aligned}
& x(P, Q)=9 P^{2}+18 Q^{2}+1 \\
& y(P, q)=9 P^{2}+18 Q^{2}-1 \\
& z(P, Q)=15 P^{2}-30 Q^{2}-12 P Q+1 \\
& w(P, Q)=15 P^{2}-30 Q^{2}-12 P Q-1 \\
& t(P, Q)=3 P^{2}-6 Q^{2}+30 P Q
\end{aligned}
$$

CHOICE -2:

$$
\text { Let } \mathrm{p}=3 \mathrm{P}+1, \mathrm{q}=3 \mathrm{Q}+1
$$

For this choice, the non-zero integral solutions of (1) are found to be

$$
\begin{aligned}
& x(P, Q)=9 P^{2}+18 Q^{2}+6 P+12 Q+4 \\
& y(P, q)=9 P^{2}+18 Q^{2}+6 P+12 Q+2 \\
& z(P, Q)=15 P^{2}-30 Q^{2}+6 P-24 Q-12 P Q-2 \\
& w(P, Q)=15 P^{2}-30 Q^{2}+6 P-24 Q-12 P Q-4 \\
& t(P, Q)=3 P^{2}-6 Q^{2}+12 P+6 Q+30 P Q+3
\end{aligned}
$$

PROPERTIES:

- $3 t(p, p)-x(p, p)=3 g n_{3 p^{2}}$
- $\quad 15 \mathrm{t}(\mathrm{p}(\mathrm{p}+1), 2 \mathrm{p}+1)-3 \mathrm{w}(\mathrm{p}(\mathrm{p}+1), 2 \mathrm{p}+1)-3=324 \mathrm{p}_{\mathrm{p}}^{4}$

International Journal of Engineering, Science and Mathematics

- $3\{5 t(p,(p+1)(p+2))-z(p,(p+1)(p+2))+1\}=324 p_{p}^{3}$
- $3\left\{10 \mathrm{t}\left(\mathrm{p}, 2 \mathrm{p}^{2}+1\right)-\mathrm{z}\left(\mathrm{p}, 2 \mathrm{p}^{2}+1\right)-\mathrm{w}\left(\mathrm{p}, 2 \mathrm{p}^{2}+1\right)\right\}=108 \mathrm{OH}_{\mathrm{p}}$
- $2 t(2 p, 1)-x(2 p, 1)-y(2 p, 1)=8 g_{p^{2}}$

Each of the following represents a nasty number
a) $5 x(p, p)-3 z(p, p)-2$
b) $5 \mathrm{x}(\mathrm{p}, \mathrm{p})-3 \mathrm{w}(\mathrm{p}, \mathrm{p})-8$
c) $15 \mathrm{t}(\mathrm{p}, \mathrm{p})-3 \mathrm{w}(\mathrm{p}, \mathrm{p})-3$
d) $3 t(p, p)-x(p, p)+1$
e) $z(p,-p)+w(p,-p)$

PATTERN-3:

In equation (5), Writing 3 as $3=\frac{(1+i 11 \sqrt{2})(1-\mathrm{i} 11 \sqrt{2})}{81}$

Repeating the above process, we've

$$
\begin{aligned}
& a(p, q)=\frac{1}{9}\left(p^{2}-2 q^{2}-44 p q\right) \\
& t(p, q)=\frac{1}{9}\left(11 p^{2}-22 q^{2}-2 p q\right)
\end{aligned}
$$

CHOICE-1:

$$
\text { Let } p=3 P, q=3 Q
$$

The corresponding integral solutions of (1) are obtained as below

$$
\begin{aligned}
& \mathrm{x}(\mathrm{P}, \mathrm{Q})=9 \mathrm{P}^{2}-18 \mathrm{Q}^{2}+1 \\
& \mathrm{y}(\mathrm{P}, \mathrm{q})=9 \mathrm{P}^{2}-18 \mathrm{Q}^{2}-1 \\
& \mathrm{z}(\mathrm{P}, \mathrm{Q})=\mathrm{P}^{2}-2 \mathrm{Q}^{2}-44 \mathrm{PQ}+1 \\
& \mathrm{w}(\mathrm{P}, \mathrm{Q})=\mathrm{P}^{2}-2 \mathrm{Q}^{2}-44 \mathrm{PQ}-1 \\
& \mathrm{t}(\mathrm{P}, \mathrm{Q})=11 \mathrm{P}^{2}-22 \mathrm{Q}^{2}-2 \mathrm{PQ}
\end{aligned}
$$

PROPERTIES:

- $\mathrm{x}(\mathrm{p}, \mathrm{p}+1)-9 \mathrm{z}(\mathrm{p}, \mathrm{p}+1)+8=44 \mathrm{pr}_{\mathrm{p}}$

International Journal of Engineering, Science and Mathematics

- $\mathrm{y}(\mathrm{p}, \mathrm{p}(\mathrm{p}+1))-9 \mathrm{z}(\mathrm{p}, \mathrm{p}(\mathrm{p}+1))+10=88 \mathrm{p}_{\mathrm{p}}^{5}$
- $9\left\{t\left(p, 2 p^{2}-1\right)-11 z\left(p, 2 p^{2}-1\right)+1\right\}=402 \mathrm{SO}_{p}-2$
- $y(p, q)-9 w(p, q) \equiv 8(\bmod 44)$
- $x(p, q)+y(p, q)-9 z(p, q)-9 w(p, q) \equiv 0(\bmod 88)$

Each of the following represents a nasty number
a) $-3\{x(p, p)+y(p, p)\}$
b) $30\{\mathrm{z}(-2 \mathrm{p}, \mathrm{p})+\mathrm{w}(-2 \mathrm{p}, \mathrm{p})\}$
c) $6\{x(-p, p)+y(-p, p)+z(-p, p)-1\}$

PATTERN - 4

Rewriting (3) as $3 c^{2}-a^{2}=2 t^{2}$
Assume $t=3 p^{2}-q^{2}$
Write 2 as $2=(\sqrt{3}+1)(\sqrt{3}-1)$
Substitute (11) \& (12) in (10) and using the method of factorization, define

$$
(\sqrt{3} c+a)=(\sqrt{3}+1)(\sqrt{3} p+q)^{2}
$$

Equating the rational and irrational parts, we get

$$
\begin{aligned}
& \mathrm{a}(\mathrm{p}, \mathrm{q})=3 \mathrm{p}^{2}+\mathrm{q}^{2}+6 \mathrm{pq} \\
& c(p, q)=3 p^{2}+q^{2}+2 p q
\end{aligned}
$$

The corresponding integral solutions of (1) are given by

$$
\begin{aligned}
& x(p, q)=3 p^{2}+q^{2}+2 p q+1 \\
& y(p, q)=3 p^{2}+q^{2}+2 p q-1 \\
& z(p, q)=3 p^{2}+q^{2}+6 p q+1 \\
& w(p, q)=3 p^{2}+q^{2}+6 p q-1 \\
& t(p, q)=3 p^{2}-q^{2}
\end{aligned}
$$

PROPERTIES:

International Journal of Engineering, Science and Mathematics

- $\mathrm{z}(\mathrm{p}(\mathrm{p}+1),(\mathrm{p}+2)(\mathrm{p}+3))-\mathrm{x}(\mathrm{p}(\mathrm{p}+1),(\mathrm{p}+2)(\mathrm{p}+3))=96 \mathrm{pt}{ }_{\mathrm{p}}$
- $z(p,(p+1))+w(p,(p+1))-x(p,(p+1))-y(p,(p+1))=16 t_{3, p}$
- $\mathrm{w}(\mathrm{p}(\mathrm{p}+1), \mathrm{p}+2)-\mathrm{y}(\mathrm{p}(\mathrm{p}+1), \mathrm{p}+2)=24 \mathrm{p}_{\mathrm{p}}^{3}$
- $\mathrm{t}(\mathrm{p}, \mathrm{q})+\mathrm{w}(\mathrm{p}, \mathrm{q})=$ Nastynumber $+\mathrm{gn}_{3 \mathrm{pq}}$
- $\mathrm{t}(\mathrm{p}, 1)+\mathrm{w}(\mathrm{p}, 1)+1=6 \mathrm{pr} \mathrm{p}_{\mathrm{p}}$

Each of the following represents a nasty number
a) $6\{w(p, p)-y(p, p)\}$
b) $2\{\mathrm{t}(\mathrm{p}, \mathrm{p})+\mathrm{w}(\mathrm{p}, \mathrm{p})+1\}$
c) $21\{t(p, p)+x(p, p)+y(p, p)\}$
d) $6\{y(p, p)+z(p, p)\}$

PATTERN - 5

Write 2 as $2=(3 \sqrt{3}+5)(3 \sqrt{3}-5)$
Repeating the above process the non-zero distinct integral solutions of (1) are

$$
\begin{aligned}
& x(p, q)=9 p^{2}+3 q^{2}+10 p q+1 \\
& y(p, q)=9 p^{2}+3 q^{2}+10 p q-1 \\
& z(p, q)=15 p^{2}+5 q^{2}+18 p q+1 \\
& w(p, q)=15 p^{2}+5 q^{2}+18 p q-1 \\
& t(p, q)=3 p^{2}-q^{2}
\end{aligned}
$$

PROPERTIES:

- $\mathrm{x}(\mathrm{p}+1, \mathrm{p})-3 \mathrm{t}(\mathrm{p}+1, \mathrm{p})-1=$ Nastynumber $+10 \mathrm{pr}_{\mathrm{p}}$
- $3 z(p, q)-5 x(p, q)=2 \mathrm{gn}_{\mathrm{pq}}$
- $y(p, q)+z(p, q) \equiv 0(\bmod 4)$
- $3 \mathrm{w}\left(\mathrm{p}, 2 \mathrm{p}^{2}-1\right)-5 \mathrm{y}\left(\mathrm{p}, 2 \mathrm{p}^{2}-1\right)-2=4 \mathrm{SO}_{\mathrm{p}}$

Each of the following represents a nasty number

International Journal of Engineering, Science and Mathematics

a) $6\{x(p, p)-3 t(p, p)-1\}$
b) $5 x(p, p)+y(p, p)+3 t(p, p)-3 z(p, p)-1$

PATTERN - 6

Consider (3) as $\mathrm{a}^{2}=3 \mathrm{c}^{2}-2 \mathrm{t}^{2}$
Substitute the linear transformations,

$$
\begin{equation*}
\mathrm{c}=\mathrm{p}+2 \mathrm{q}, \mathrm{t}=\mathrm{p}+3 \mathrm{q} \tag{14}
\end{equation*}
$$

in (13), we have

$$
a^{2}=p^{2}-6 q^{2}
$$

which is satisfied by

$$
\begin{aligned}
& p=6 r^{2}+s^{2} \\
& q=2 r s \\
& a=6 r^{2}-s^{2}
\end{aligned}
$$

Hence, the corresponding non-zero integral solutions of (1) are seen to be

$$
\begin{aligned}
& x(r, s)=6 r^{2}+s^{2}+4 r s+1 \\
& y(r, s)=6 r^{2}+s^{2}+4 r s-1 \\
& z(r, s)=6 r^{2}-s^{2}+1 \\
& w(r, s)=6 r^{2}-s^{2}-1 \\
& t(r, s)=6 r^{2}+s^{2}+6 r s
\end{aligned}
$$

PROPERTIES:

- $\mathrm{t}(3 \mathrm{r}, \mathrm{r}-1)-\mathrm{y}(3 \mathrm{r}, \mathrm{r}-1)=\mathrm{S}_{\mathrm{r}}$
- $t(r, s)-x(r, s)=g n_{r s}$
- $2 t(r, r(r+1))-x(r, r(r+1))-y(r, r(r+1))=8 P_{r}^{5}$
- $\mathrm{x}(\mathrm{r}, \mathrm{s})+\mathrm{w}(\mathrm{r}, \mathrm{s}) \equiv 0(\bmod 4)$

Each of the following represents a nasty number
a) $2\{\mathrm{x}(\mathrm{r}, \mathrm{r})+\mathrm{y}(\mathrm{r}, \mathrm{r})-\mathrm{z}(\mathrm{r}, \mathrm{r})-\mathrm{w}(\mathrm{r}, \mathrm{r})\}$

International Journal of Engineering, Science and Mathematics

b) $6\{2 \mathrm{t}(\mathrm{r}, \mathrm{r})-\mathrm{x}(\mathrm{r}, \mathrm{r})-\mathrm{y}(\mathrm{r}, \mathrm{r})\}$

REMARKABLE OBSERVATIONS:

Employing the solutions ($\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{w}, \mathrm{t}$) of (1), a few observations among the special polygonal and pyramidal numbers are exhibited below

1. $\left[\frac{3 \mathrm{P}_{\mathrm{z}}^{3}}{\mathrm{t}_{3, \mathrm{z}}}\right]^{3}-\left[\frac{\mathrm{P}_{\mathrm{w}}^{5}}{\mathrm{t}_{3, \mathrm{w}}}\right]^{3}+4 \equiv 0(\bmod 3)$
2. $\left[\frac{6 \mathrm{P}_{\mathrm{z}}^{4}}{\mathrm{t}_{6, \mathrm{z}+1}}\right]^{3}-\left[\frac{6 \mathrm{P}_{\mathrm{w}-1}^{4}}{\mathrm{t}_{3,2 \mathrm{w}-2}}\right]^{3} \equiv 2(\bmod 3)$
3. $\left[\frac{P_{z-1}^{4}}{t_{3, z-1}}-\frac{P_{z-1}^{3}}{t_{3, z}}\right]^{3}-\left[\frac{6 P_{w-1}^{4}}{t_{3,2 w-2}}\right] \equiv 2(\bmod 3)$
4. $6\left\{\left[\frac{6 P_{x}^{4}}{t_{6, x+1}}\right]^{3}-\left[\frac{4 \mathrm{Pt}_{\mathrm{y}-3}}{\mathrm{p}_{\mathrm{y}-3}^{3}}\right]^{3}\right\}-2\left[\frac{3 \mathrm{P}_{\mathrm{z}}^{3}}{\mathrm{t}_{3, \mathrm{z}}}\right]^{3}+2\left[\frac{4 \mathrm{P}_{\mathrm{w}}^{5}}{\mathrm{ct}_{4, \mathrm{w}}-1}\right]-8$ is a nasty number
5. $3\left[\frac{3 p_{x-1}^{4}-p_{x-1}^{3}}{t_{3, x-2}}\right]^{3}-3\left[\frac{36 p_{y-2}^{3}}{s_{y-1}-1}\right]^{3}+\left[\frac{t_{3,2 w-1}}{g n_{w}}\right]^{3}-12\left[\frac{12 p_{t-2}^{5}}{s_{t-1}-1}\right]^{2}-4$ is a cubical integer

CONCLUSION:

To conclude, one may search for other patterns of solutions and their corresponding properties.

REFERENCE:

[1]. L.E. Dickson, History of Theory of numbers, vol.2, Chelsea Publishing company, New York, 1952.
[2]. L.J. Mordell, Diophantine Equations, Academic press, London, 1969.
[3]. Carmichael.R.D, The Theory of numbers and Diophantine Analysis,
New York, Dover, 1959. $(x+y)\left(x y+w^{2}\right)=2\left(k^{2}+1\right) z^{3}$, Bulletin of pure and applied sciences,Vol.28E(No.2),197-202, 2009.
[5] M.A.Gopalan and V.pandiChelvi, Remarkable solutions on the cubic equation with four unknows $\mathrm{x}^{3}+\mathrm{y}^{3}+\mathrm{z}^{3}=28(\mathrm{x}+\mathrm{y}+\mathrm{z}) \mathrm{w}^{2}$, Antarctica J.of maths, Vol.4, No.4, 393-401, 2010.
[6] M.A. Gopalan and B.Sivagami, Integral solutions of homogeneous cubic equation with four unknows $\mathrm{x}^{3}+\mathrm{y}^{3}+\mathrm{z}^{3}=3 \mathrm{xyz}+2(\mathrm{x}+\mathrm{y}) \mathrm{w}^{3}$,Impact.J.Sci.Tech, Vol.4, No. 3 ,53-60, 2010.
[7] M.A.Gopalan and S.Premalatha, On the cubic Diophantine equation with four unknows $(x-y)\left(x y-w^{2}\right)=2\left(n^{2}+2 n\right) z^{3}$, International Journal of mathematical sciences,Vol.9,No.1-2, Jan-June,171-175, 2010.
[8] M.A.Gopalan and J.KaligaRani, Integral solutions of $\mathrm{x}^{3}+\mathrm{y}^{3}+(\mathrm{x}+\mathrm{y}) \mathrm{xy}=\mathrm{z}^{3}+\mathrm{w}^{3}+(\mathrm{z}+\mathrm{w}) \mathrm{zw}, \quad$ Bulletin of pure and applied sciences,Vol.29E(No.1),169-173, 2010.
[9] M.A.Gopalan and S.Premalatha , Integral solutions of $(x+y)\left(x y+w^{2}\right)=2(k+1) z^{3}$, The Global Journal of applied mathematics and Mathematical sciences, Vol.3, No.1-2,51-55, 2010.
[10] M.A.Gopalan, S.Vidhyalakshmi and T.R.Usha Rani, On the cubic equation with five unknows $\mathrm{x}^{3}+\mathrm{y}^{3}=\mathrm{z}^{3}+\mathrm{w}^{3}+\mathrm{t}^{2}(\mathrm{x}+\mathrm{y})$, Indian Journal of science, Vol.1,No.1,17-20, Nov 2012.
[11] M.A.Gopalan, S.Vidhyalakshmi and T.R.Usha Rani, Integral solutions of the cubic equation with five unknows $\mathrm{x}^{3}+\mathrm{y}^{3}+\mathrm{u}^{3}+\mathrm{v}^{3}=3 \mathrm{t}^{3}$, IJAMA, Vol.4(2), 147151, Dec 2012.

International Journal of Engineering, Science and Mathematics

[^0]: * Department of Mathematics, Shrimati Indira Gandhi College, Tiruchirappalli - 620002.

