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Abstract 

 In this paper, attempt to study effects of extreme observations on two estimators of finite 

population total theoretically and by simulation is made. We compare the ratio estimate with the 

local linear polynomial estimate of finite population total given different finite populations. Both 

classical and the non parametric estimator based on the local linear polynomial produce good 

results when the auxiliary and the study variables are highly correlated. It is however noted that 

in the presence of outlying observations the local linear polynomial performs better with respect 

to design mean square error (MSE) in all the artificial populations generated.  
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1. Introduction.  While investigating the characteristics of an entire population using a sample, 

statisticians employ either parametric or non-parametric methods. Parametric methods require 

that prior assumptions are made with regard to the distribution of the random variable while non-

parametric methods employ analysis without such prior assumptions about the distribution of the 

random variable. Non parametric methods deal with approaches, some which are model based 

and others which are model assisted.  

In an attempt to make inferences about population characteristics from a sample, statisticians 

have to bare in mind the possible contribution of outlying observations to the results 

Robustness of an estimator  will signify  insensitivity to small deviations  due to the presence of 

unusual observations.  

1.1 General effects of outliers. Barnett et al., (1994) suggested accommodation and 

transformation as methods of dealing with outliers in a set of data. They explored the use of non-

parametric methods in accommodation of outlying observations and further suggested 

transformations such as the use of square roots or natural logarithms when data points are non-

negative to pull outliers into proximity with the rest of the data. Finally they suggested that 

deletion of outliers may be necessary if they are found to be errors that cannot be corrected.  

    Cannon et. el., (1999) investigated the effects of outliers on a regression line. In their work, a 

high leverage point that does not conform to the linear relationship between the variables in 

question is influential and would considerably change p-values from significance tests.  Robin 

(2000) discussed effects of both deterministic and random outliers. His work  considered the 

effects of outliers on sample means and variances. He  suggested the use of visual aids, dot plots, 

scatter plots and box plots for identification of outliers before one proceeds with the analysis of a 

given set of data. He further explored a non-parametric or distribution free approach to detect 

outliers based on computing medians.  Madalena (2005) investigated effects of outliers on Mean 

Square Error curves and variance. Webster (2006) outlines the effects of outlying observations 

on regression analysis. 

1.2 Outlier Robust Estimation. Cassel et. al., (1976) and Sarndal (1980) considered the 

generalized regression estimators which feature great robustness to model misspecification. 

Aspects of the ratio and local polynomial regression estimators of finite population total 

considered in this project. have been previously discussed by various statisticians. Cochran 
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(1963) constructed a modified ratio estimator corrected for bias. Barnett (1974) showed that the 

ratio estimator makes use of parametrically specified models and that it is applicable as an 

estimator in a bivariate set of data where the two population characteristics are highly correlated. 

Breidt et. al.,(2000) considered estimation of finite population totals in the presence of auxiliary 

information based on the local polynomial regression. Design-based approaches to dealing with 

outliers in survey estimation have been described by Kish (1965),Searls (1966) and Hidiroglou 

et. al.,(1981). Chambers (1982,1986) developed model-based outlier robust techniques for 

sample surveys. Recent work on thgis area is described in Chambers et. al.,(1993), Lee 

(1991,1995), Hullinger (1995), Welsh et. al.,(1998), Duchesne (1999).  

     2. Proposed Ratio Estimator of Finite Population Total. In the ratio estimation, an 

auxiliary variate ix , correlated with iy is obtained for each unit in the sample. The population 

total X of the ix must be known. In practice, ix  is often the value of iy  at some previous time 

when a complete census was taken. The aim of this method is to obtain increased precision by 

taking advantage of the correlation between iy  and ix . In our study we have assumed simple 

random sampling.  

Suppose 1 2 NU = (u ,u ,...,u )  is a finite population of size N. Let Y be the study or survey variable 

and iY
 
be the study variable for the i

th 
individual in the population. Let X be an auxiliary 

variable such that X is highly correlated with Y and iX be the auxiliary variable for the i
th

 

individual in the population. Information about X can be available before hand or can be 

generated in the course of study. If information about X is available before hand then the choice 

of the sampling strategy can be influenced both at the design and estimation stages. If however 

the existence of the auxiliary information is discovered in the course of study, then it can be 

made use of by proposing an estimator. Let Y and X be the population means of iY  and iX  

respectively, then R is the ratio of Y to X in the population such that: 

 1

1

N

i

i

N

i

i

Y
Y NY Y

R
X NX X

X





   



          

3.1.1.1 
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     For the sample we have; 

                         1

1

ˆ
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            3.1.1.2  

where, R̂  is an estimator of R, iy and ix  are the study variable for the i
th

 unit in the sample and 

auxiliary variable for the i
th 

unit in the sample respectively. 

The ratio estimator of the population mean is; 

     1

1

ˆ ˆ

n

i

n

i

yi
y

Y X X RX
x

xi





  



     

 3.1.1.3  

 For population totals the ratio estimators are; 

     
ˆˆ ˆ

R RY NY RX              

3.1.1.4  

The ratio estimator is normally a biased estimator and its bias is determined by;  

 

        ˆ ˆ ˆ ˆ ˆ- - -Bias Y E Y Y E RX RX XE R R XBiasR     

To obtain bias R̂ , one may proceed as follows. 

Let             
- 1ˆ - - -

y y Rx
R R R y Rx

x x x
                 3.1.1.5 

 

 

Then; 

        2 2

2 2

1- 1-ˆ ˆ- - -  x xy x x y

f f
E R R RS S RS S S Bias R

nX nX
           3.1.1.6 

 Where the correlation coefficient   between iy  and ix  in the finite population is defined by the 

equation 
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and yx y xS S S is the covariance between iy  and ix .  

      Hence 

 

 
     21-ˆ ˆ   -R x x y

f
Bias Y X Bias R RS S S

nX
         3.1.1.7 

       

2.1 Variance of the Proposed Ratio Estimator. Suppose n is large and    ˆ ˆ MSE R Var R . 

We assume that  x  and  X  are quite close such that
- -ˆ -

y Rx y Rx
R R

x X
  , so that the bias of 

R̂  becomes quite small, Konijn (1973). 

Let -i i id y Rx . Then for a sample of size n,  -d y Rx  and from the theory of simple random 

sampling  

  
 

2

2

1

-- -
var

-1

N
i
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i

d DN n N n
d S

nN nN N

    

 but    

    - - 0D E d E y Rx Y RX     

Hence,    

      
 

2
2

2 2
1

-1 1-ˆ ˆvar - var
-1

N
i i

i

y Rxf
R E R R d

NX nX 

       3.1.2.1 

Equation (3.1.2.1) can be written as 

   
  

2
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                     2 2 2

2

1-
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f
S R S R S S
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Hence          

                            2 2 21-ˆvar - 2R y x x Y

f
Y S R S R S S

nX
     3.1.2.2 

and variance of the estimator of the population total is 

  

        
2

2 2 2 21-ˆ ˆˆvar var var - 2R R R y x x Y

N f
Y NY N Y S R S R S S

nX
      3.1.2.3 

2.2 Estimation of the variance 
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 can be estimated by;  
 

2
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ˆ-

-1

N
i i

i
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Hence 

 

    2 21-ˆ ˆ ˆˆ - 2y x x y

f
var R s Rs Rs s

nX
      3.1.3.1 

The estimates of ˆˆ ( )var R  are: 

 

    2 2

1 2

1-ˆ ˆ ˆˆ - 2y x x y

f
var R s Rs Rs s

nX
  ,   3.1.3.2 

when X is known and  

 

    2 2
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1-ˆ ˆ ˆˆ - 2y x x y

f
var R s Rs Rs s

nx
  ,   3.1.3.3 

when X is unknown 
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    3. Local Polynomial Regression Estimator. Consider a finite population  1,..., ,...,NU i N . 

Let iX be an auxiliary variable observed for each Ni U .Let for the current discussion such iX ’s 

be scalars.  

Let   . 
N

x i

i U

t x


  A probability sample s is drawn from  NU according to a fixed-size sampling 

design  .Np , where  Np s  is the probability of drawing the sample s. Let Nn  be the size of s. 

Assume    
:

PriN N

s i s

i s p s


    and    
: ,

Pr , 0ijN N

s i j s

i j s p s


    ,for all ,  Ni j U . 

The study variable iy is observed for each i s . We aim at estimating

N

y i

i U

t y


  . Let 

i

1,
I

0,

i s

i s


 


  and let     p i iE I   where  .pE  is the averaging of all possible samples from 

the finite population. Then an estimator 
 ˆ yt  of 

 yt is said to be design-unbiased if    
ˆ

p y yE t t . 

The Horvitz-Thompson estimator will be taken as the design –unbiased estimator of y  t . 

  ˆ    
N

i i i

y

i s i Ui i

y y I
t

  

  
   

 3.2.2.1       

 (Horvitz-Thompson, 1952). 

The variance of the Horvitz-Thompson estimator under the sampling design is 

     
,

ˆvar   -
N

ji

p y ij i j

i j U i j

yy
t   

 

      3.2.2.2 

Note that 
 ˆ yt  does note depend on the auxiliary information ix  

Suppose the finite population of iy ’s is modeled conditional on the auxiliary variable ix  as a 

realization from an infinite super population ξ, in which 

  i i iy m x         3.2.2.3 

where  im x is a smooth function of ix ’s and  iv x  is smooth and strictly positive, i  are 

independent and identically distributed random variables with mean zero and variance  iv x . 

Given ix ,     i im x E y  is called the regression function while     i iv x Var y  is called 
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the variance function. Let Kernel function K (.) be such that:  
1

1

1K u du


 .Let nh  denote the 

band width and let   u i Ny i U y   be the N-vector of iy ’s in the finite population. Define the 

 1N p   matrix 

 

 

 

 

1 11 - ... -

. . .

. . . 1  - ... -

. . .

1 - ... -
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N i N i

x x x x

u x x x x

x x x x



 
 
 
    

    
 
 
 
 

X , 

and define the N N  matrix, 

-1

N

j i

i

N N j U

x x
u diag K

h h


   
   

   
W  

Let e  represent a vector with a 1 in the r
th 

position and 0 elsewhere i.e.   
/

1,0,0,...,0e .Then 

the local polynomial kernel estimator of the regression function at ix  is given by; 

 
 

1
' ' '

i 1m ui ui ui ui ui u ui u



 '
e X W X X W y w y         3.2.2.4 

 where ,  ' '
ui ui ui uiw e X W X  

This is well defined as long as    
'

ui ui uiX W X   is invertible. 

If im ’s are well known a design-unbiased estimator of 
 yt  is the generalized difference estimator 

-
ˆ i i

y i

i s i Ni

y m
t m

 

            3.2.2.5            

 (Sarndal, Swenson, and Wretman, 

1992) 

The variance of this estimator is  

              

 
,

--
ˆvar ( - )  

N

j ji i

y ij i j

i j U i j

y my m
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       3.2.2.6 
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This variance is much smaller than the variance of the Horvitz-Thompson estimator   (3.2.2.2). 

The deviations    ( - ) -i i i i iy m m x m    will typically have smaller variation than  iy  for 

any reasonable smoothing procedure under the model ξ. im the estimator of m (.) cannot be 

found since only iy  in a sample Ns U  are known. im is replaced by a sample-based consistent 

estimator. Let  s iy i s y be the Nn  –vector of iy ’s obtained in the sample. Define the 

 1Nn p  matrix 

                                         
 si   = 1 - .... -

p

j i j ix x x x 
  

X  

  and the N Nn n matrix; 

                                    

si

-1 j i

j N N

x x
diag K

h h

   
   

   

W  

A sample design –based estimator of im  is given by; 

 
1

o ' ' '

i 1m̂ o

si si si si si s si u



 '
e X W X X W y w y

      
3.2.2.7 

 as long as 'si si siX W X is invertible. Substituting 
o

im̂  into (3.2.2.5) we get the local polynomial 

regression estimator for the population total. 

                     

ˆ-
ˆ

N

o

o oi i

y i

i s i Ui

y m
t m

 

              3.2.2.8  

Presence of the inclusion probabilities in the smoothing weights 'o

siw  makes our sample-based 

estimator ˆ im a design-consistent estimator of the finite population smooth im , which is based on 

some bandwidth nh  considered here fixed for any N. In principle, the estimator 3.2.2.7 can be 

undefined for certain Ni U , even if the population estimator 3.2.2.4 is defined everywhere.  In 

practice, a large bandwidth is always chosen to ensure that 'si si siX W X is invertible. In theory 

where a fixed band width is used, we consider an adjusted sample estimator which will exist for 

any sample Ns U . Let the adjusted sample estimator be given by  

1
p+1

' ' '

i 1 2

j=1

m̂ diag
N

si si si si si s si se




  
       

'
X W X X W y w y       3.2.2.9 
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 for some small 0  .  

Let           
ˆ-

ˆ

N

i i

y i

i s i Ui

y m
t m

 

    ,               3.2.2.10 

denote the local polynomial regression estimator that uses adjusted sample smoothers. We 

consider the estimator when p=0 and when p = 1 using Taylor linearization for the sample 

smoother ˆ im .Write   -1 ,0i im f N t  and   -1ˆˆ  ,i im f N t   for some function f where  comes 

from equation 3.2.2.9 and vanishes in the population fit in equation 3.2.2.4. 

Let       † *

1

-1

N N

G

k i

i igk igk

k U k UN N g

x x
t K z z

h h 


    
     

    
              

and 

                † *

1

-1
ˆ

N N

G

k i k k

i igk igk

k U k UN N k kg

x x I I
t K z z

h h   


    
     

    
               

for some suitable    
†

igkz  

For the local polynomial regression of degree p, 3 2G p  . If we let 1 2 1G p   

We can write   
-1†

1-     
g

igk k iz x x if g G     and   
- -1†

1-      
g G

igk k i kz x x y if g G   

For p =0 we have the kernel regression and (3.2.2.4) is the Nadaraya-Watson estimator based on 

the entire population. 

3.1 Assumptions for proof of theoretical results. We outline the assumptions and prove the 

theoretical properties 

3.1.1 Distribution of the errors under ξ: the errors i  are independent and have mean zero, 

variance  iv x and compact support, uniformly for all N. 

3.1.2 For each N, the ix are considered fixed with respect to the super population model ξ. The 

ix  are independent and identically distributed    
-

x
F x f t dt


  , where  .f is a density with 

compact support  ,x xa b and    0f x   for all  ,x xx a b . 
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3.2. Asymptotic Normality. The local polynomial regression estimator inherits the limiting 

distributional properties of the generalized difference estimator, as demonstrated in the following 

theorem. 

Theorem 4.  

Assume that 1-7 hold and let ˆ
yt and ˆ( )p yVar t  be as defined in (3.2.2.5) and (3.2.2.6), 

respectively. Then 

                                                  
 

 
 

1

1
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y y L

p y

N t t
N

Var N t






  

as  N   implies 

                                                   
 

 
 

1

1
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as  N  , where 

                                                     1

2
,

-1ˆ ˆ ˆ ˆ- -

N

ij i j i j

y i i j j
i j iji j U

I I
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Proof of Theorem 4:  

                      1 2 1 21 1 ˆ1 0 0

N

i i i
y y p y y pN N

ii U

y m I
N t t n N t t n

N 

  



 
       

 
  

Further,    1 1ˆ 1
p

y yV N t AMSE N t     by theorem 3, so the result is established. 

Thus, establishing a central limit theorem (CLT) for the local polynomial regression estimator is 

equivalent to establishing a CLT for the generalized difference estimator, which is in turn 

essentially the same problem as problem as establishing a CLT for the  Horvitz- Thompson 

estimator. The following corollary establishes a central limit theorem for the pivotal statistic 

under simple random sampling. 

Corollary 1.  

Assume that the design is simple random sampling without replacement, and assume that 1-7 

hold. Then 
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as  N  , where  1ˆ
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Proof of Corollary. From the assumptions and Lemma 2(iv), 

                                     
41 ˆlimsup

N
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N i U
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   , 

from which the Lyapunov condition(3.25) of Thompson (1997) can be deduced. 

Note that 
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From Theorem 3.2 of Thompson (1997), 
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1
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 , 

so that the result follows from Theorem 4. 

Theorem 5: Under the assumptions 1-7 yt
  asymptotically attains the Godambe-Joshi lower 

bound in the sense that       

                                               

2
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Proof of Theorem 5:  
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The cross product terms go to zero as N   by application of the Cauchy-Schwarz inequality 

and the result is proved. 

    3.4. Outlier Robust Estimation.The p
th 

order local polynomial regression is based on 

minimizing 
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          3.2.9.1 

Some authors have suggested the related approach of using a local version of M-estimation 

which attempts to achieve robustness by replacing 3.2.9.1 by 
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         3.2.9.2 
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 . is chosen to down weight outliers. This is accomplished by choosing  .  to be symmetric 

with a unique minimum at zero, so that its derivative  .  is bounded. Minimization of 3.2.9.2 

requires iterative procedure which is stopped after one or two steps, (Fan and Jiang, 1999). 

However since the iterations start at the least squares local polynomial estimator, the estimator is 

still potentially sensitive to outliers. True robustness requires an estimator that is not based on the 

least squares estimator. 

Wang et al (1994) investigated the Least Absolute Values (LAV) version of 3.2.9.2 estimating 

 .m  by minimizing 

 0

1

-
- - ... - -

n
p i

i p i

i

x x
y x x K

h
 



 
 
 

         3.2.9.3 

We investigate the conditional breakdown of 3.2.9.3 and its robustness 

 3.5. Determining the Conditional Breakdown . From definitions l and m : Breakdown of 

an estimator is the smallest fraction of outliers that can force the estimators to arbitrary values, 

and is thus the measure of the resistance of the estimator to unusual values. Breakdown point of 

an estimator  is defined to be    min ; ; , ,  inf
m

bias m y X is inite
n

   
  

 
 

where  ; , ,bias m y X  is the maximum bias that can be caused by replacing any m of the 

original data points by arbitrary values, (Donoho and Huber, 1983). Any estimator that is not at 

all resistant to outliers, such as one based on least squares has breakdown
1

n
. Since the local 

polynomial regression estimate  ˆ .m  is implemented by solving many local regression problems, 

each centered at an evaluation point x , its breakdown properties are defined on a local level as 

well. We restrict ourselves to kernel functions  .K that are positive on a bounded interval [-1, 

1]. Conditional breakdown implies that unlike for parametric models, the breakdown point 

changes depending on the evaluation point of x . 

 

      4. Results 
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Table 1: Relative MSE of the ratio estimator to the local linear polynomial estimator 

(artificial population) 

 

 

 

Relative Mean Square Error 

h n=30 n=50 

Linear 1 =.1 0.1 0.000027 0.0000189 

0.25 0.000091 0.0000287 

0.5 0.0000964 0.001303 

Linear  2 =.4 0.1 0.00211 0.002503 

0.25 0.004523 0.008477 

0.5 0.006464 0.0104 

Quadratic 1 =.1 0.1 20.518 98.867 

0.25 7.561 21.967 

0.5 5.1481 16.303 

Quadratic 2 =.4 0.1 15.48 18.4534 

0.25 14.29 13.5318 

0.5 9.2867 12.3895 

Exponential 1 =.1 0.1 1.628 3.4007 

0.25 1.490 1.8587 

0.5 1.0985 1.3533 

Exponential 2 =.4 0.1 2.8626 4.099 
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0.25 1.235 1.2419 

0.5 1.006 1.105 

 

 

4.1 Discussion of results. From table of relative mean square error, it is clear that the ratio 

estimator performs better than the local linear polynomial estimator when the population is linear 

irrespective of the variance used. The local linear polynomial regression estimator turns out to be 

a better estimator when the population involved is either quadratic or exponential. The relative 

mean square errors increase as the bandwidths increase from 0.1 to 0.5 which implies robustness 

of the local linear polynomial regression estimator when the Quadratic Kernel is combined with 

a smaller bandwidth. This trend is also true as the sample size increases from 20 to 30 which 

indicates that as we increase the likelihood of extreme values in the sample, the non parametric 

estimator performs better than the parametric estimator  

 

4.2. Conclusion. From the results obtained we conclude that the choice of an appropriate 

estimator of finite population totals is important. The ratio estimator will be very useful when the 

variables are highly correlated such that their graph is a line through the origin. The local linear 

polynomial regression estimator will be handy when data involved does not depict a high linear 

relationship. 
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