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Abstract 
 Several scientific fields rely on Deep Neural Networks these days. A specific subset of 

DNNs, Convolutional Neural Networks have many convolution layers, an activation 

function, and a pooling layer at the bottom. To create new feature maps with a reduced 

resolution, the pooling layer applies downsampling to the feature maps received from the 

preceding layer. This layer plays a crucial role in the process. This layer significantly 

flattens the input's spatial dimension. There are two primary uses for it. The first is to 

decrease the computing cost by reducing the number of parameters or weights. The second 

is regulating the network's tendency to overfit. In a perfect world, pooling methods would 

glean only pertinent data while ignoring superfluous minutiae. In Deep Neural Networks, 

the pooling process may be implemented in many different ways. Several well-known and 

practical pooling algorithms were discussed in this work.  

Keywords: Pooling Methods, Convolutional Neural Networks, Deep learning, Down-

sampling 

1. Introduction  

Computers and other electronic gadgets rely on machine learning as their foundation for 

intelligence. To do this, it makes use of predictive models, which are able to draw on past 

data in order to make predictions about new events, trends, and behaviours. In deep 

learning, a kind of machine learning, mathematical representations of models modelled 

after the human brain are used. Deep Neural Networks (DNNs) automatically learn, from 

data, the parameters that define the mathematical models; these parameters can range in 

number from a few thousand to one hundred million or more. DNNs are able to represent 

input-output interactions that are complicated and non-linear. Their designs provide 

compositional models in which the item is represented as a layered assembly of primitives. 

There are a lot of different takes on a few basic techniques in deep architectures. Deep 

neural networks (DNNs) use hierarchical structures in an effort to learn data abstractions at 

a high level. Semantic parsing[1], transfer learning[2,3], natural language processing[4], 

computer vision[5,6], and many more classic AI disciplines have made extensive use of 

this developing method. The tremendous improvements in machine learning algorithms, 

the drastically reduced cost of computer gear, and the considerably enhanced processing 

capabilities of chips are the three primary causes for the current boom of deep learning [7]. 

A number of models utilising DNNs for various purposes have been put out in recent 

years. Convolution Neural Networks (CNNs), Restricted Boltzmann Machines (RBMs), 

Auto encoders, Sparse Coders, and Recurrent Neural Networks are the five main types of 

these models [8, 9]. For tasks like object segmentation and classification, convolutional 

neural networks (CNNs) are among the most essential and practical forms of DNNs. The 
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convolutional, pooling, and fully linked layers make up a convolutional neural network 

(CNN). This stack performs distinct spatial operations. To construct the feature maps, 

CNN convolves the input picture using various kernels in the convolution layers. It is 

common practice to install the pooling layer subsequent to the convolution layer. Feature 

maps and network parameters are getting smaller thanks to this layer's use. A flatten layer 

comes after the pooling layer, and then there are a number of completely linked layers. To 

make them acceptable for the next fully linked layers, the flatten layer converts the 2D 

feature maps created in the preceding layer into 1D feature maps. Later on, the photos may 

be classified using the flattened vector. 

―To lower the feature maps' dimensionality, pooling is an essential step in convolutional a-

based systems. It reduces the dimensionality of the feature map, which means it merges a 

collection of values into a smaller set of values. It takes the joint feature representation and 

turns it into usable information by retaining key details and removing unnecessary ones. In 

addition to lowering the computational cost for higher layers by deleting certain 

connections between convolutional layers, pooling operators provide a sort of spatial 

transformation invariance. The feature maps from the preceding layer are down-sampled in 

this layer, resulting in new feature maps with a reduced resolution. One of the primary 

functions of this layer is to regulate overfitting; another is to decrease the computational 

cost by reducing the number of parameters or weights. In a perfect world, pooling methods 

would glean only pertinent data while ignoring superfluous minutiae. Several 

convolutional neural network (CNN) pooling techniques were examined in this paper. 

There are two types of pooling methods that we identified: the more common ones and the 

more unusual ones. Average Pooling, Max Pooling, Mixed Pooling, �� Pooling, 

Stochastic Pooling, Spatial Pyramid Pooling, and Region of Interest Pooling are all 

covered in commonly used techniques. New approaches cover a wide range of topics, 

including multi-scale order-less pooling, PCA networks, compact bilinear pooling, lead 

asymmetric pooling, edge-aware pyramid pooling, mixed pooling, spectral pooling, row-

wise max pooling, inter-map pooling, rank-based average pooling, per pixel pyramid 

pooling, weighted pooling, and genetic swimming. After that, the paper is structured like 

this: Popular pooling strategies are presented in Section 2. are covered in that section‖. 

2. Popular Pooling Methods 
 2.1. Average Pooling  

For feature pooling and extraction, the concept of average or mean was initially presented 

in [10] and utilised in the first convolution-based deep neural network [11].  Averaging the 

values of the input's rectangular pooling sections allows an average pooling layer to 

execute down-sampling, as seen in Figure 1. 

 
Fig. 1. Example of Average Pooling operation. 

2.2. Max-Pooling  

The convolutional output bands can be down-sampled using a max-pooling operator [12], 

which reduces variability. Within a set of � activations, the max-pooling operator forwards 

the highest value. The � related filters �� = [�1, …, ��,�, …, ��,�] ∈  � � make up 

the �-th max-pooled band: 

𝑝𝑗, = max(ℎ 𝑗,(𝑚−1)𝑁+𝑟)     (1) 
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when � < �, the pooling shift � ∈  {1, …, �} permits the overlap of pooling zones. The 

output dimensionality is reduced from � convolutional bands to � = ( − �)/� + 1 pooled 

bands by the pooling layer, and the resultant layer is � = [�1, …, ��] ∈  � �.�. Figure 2 

shows a Max-Pooling procedure in action. 

 
Fig.2. Exampleof Max-Poolingoperation. 

2.3. Mixed Pooling  

By integrating the non-maximal activations, average pooling reduces the activation, in 

contrast to max pooling, which only recovers the greatest activation. To get around this 

issue, Yu et al. [13] suggested a mixed method that combines average and max pooling. A 

lot of what we're doing here comes from Drop connects [15] and dropout [14]. Eq. 2 is a 

representation of mixed pooling:  

The output will be: �� = � max �∈�� �� + (1 − �) 1 |�� | ∑ �� �∈��   , 

where � determines whether to use max pooling or average pooling. A random integer 

between zero and one is chosen as the value of �. At a value of 0, it operates similarly to 

average pooling, while at a value of 1, it mimics max pooling. The backpropagation 

method makes use of the recorded value of � for forward-propagation order. By applying 

image classification to three separate datasets, Yu et al. demonstrated its superiority over 

max and average pooling.  

2.4. 𝑳𝑷 Pooling  

Claiming that it outperforms max pooling in terms of generalisation ability, Sermanet et al. 

[16] introduced the idea of �� pooling. The inputs are averaged in the pooling region 

using a weighted formula in this pooling. The form it takes is provided by Eq. 3:  

𝑠𝑗 = (1 |𝑅𝑗 | ∑ 𝑎𝑖𝑝𝑖∈𝑅𝑗) 1⁄𝑝                                                                        (3)  

Where �� is the pooling operator's output at location � and �� is the feature value at 

position � within the pooling region �. There is a range of values for � from 1 to infinity. 

The �� operator follows the behaviour of average pooling when � = 1, and max-pooling 

when � = ∞. As a compromise between average and max pooling, �� pooling is 

considered when � > 1. 

2.5. Stochastic Pooling  

IZeiler and Fergus [17] first out the concept of stochastic pooling, which was influenced by 

the dropout [14]. By comparing each pooling zone, max pooling finds the one with the 

highest activation. ―Whereas with average pooling low-activation areas are given more 

weight than high-activation ones, since all components in the pooling zone are looked at 

and their average is taken. A big issue with average pooling is this. With stochastic 

pooling, we can solve the problems with max and average pooling. In stochastic pooling, 

the value is randomly selected using a multinomial distribution. It contains the feature 

map's activations that are less than optimal‖. As shown in Eq. (4), the initial step in 

stochastic pooling is to normalise the activations within each area � and then calculate the 

probability �� for each region �. 

 

𝑝𝑖 = 𝑎𝑖 ∑𝑘∈𝑅𝑗𝑎𝑘                                                                                   (4)  

Based on �, these probabilities form a multinomial distribution that chooses location � 

and the matching pooled activation ��. The multinomial distribution chooses a spot � 

inside the area:  
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𝑠𝑗 = 𝑎𝑙𝑤ℎ 𝑒𝑟𝑒𝑙~(𝑝1, … , 𝑝|𝑅𝑗| )                                                              (5)  

Let me put it simply: the activations are chosen using probability computed using a 

multinomial distribution. In this, the odds of each activation are proportional to their 

respective probabilities. Overfitting is not allowed in stochastic pooling due to the random 

nature of the data. Stochastic pooling uses non-maximal activations and offers some of the 

same benefits as max-pooling. 

 

Fig.3.Exampleofstochasticpooling,(a)activationswithinagivenpoolingregion,(b)probabilitiesbasedonactivati

ons,(c) probability wheel, (d) sampled activation 

 

Keep in mind that the chosen element might not necessarily be the biggest one since 

stochastic pooling depicts the multinomial distribution of activations in the location. It 

promotes greater activations and downplays weaker ones. Figure 3 shows an instance of 

stochastic pooling in action. 

2.6. Spatial Pyramid Pooling 

―Spatial pyramid pooling is one of the new pooling layer approaches. As an expansion of 

the Bag-of-Words (BoW) model [20], one of the most effective approaches in computer 

vision is spatial pyramid pooling [18, 19], also known as spatial pyramid matching 

(SPM[19]). It takes the image and divides it into sections ranging from very fine to very 

coarse, then aggregates local characteristics within each section. He et.al. removed the 

network's fixed-size limitation by introducing a spatial pyramid pooling (SPP) [18, 19] 

layer in [21]. More precisely, they superimposed an SPP layer over the final convolutional 

layer. The fully-connected layers get their inputs from the SPP layer, which pools the 

features and produces outputs of a set length. So, to construct the YOLO detection 

technique without initial cropping or warping, Huang et.al. [22] aggregated some 

information between convolutional and fully-connected layers, which is farther down the 

network hierarchy. Figure 4 depicts a three-tiered spatial pyramid pooling layer‖. 

 
Fig. 4. Spatial pyramid pooling structure [23] 

2.7. Region of Interest Pooling  

Convolutional neural networks rely heavily on the Region of Interest (RoI) Pooling layer 

for tasks such as object identification [24] and segmentation [25]. One way the ROI 



 ISSN: 2320-0294 Impact Factor: 6.765  

28 International Journal of Engineering, Science and Mathematics 

http://www.ijmra.us, Email: editorijmie@gmail.com 

 

pooling layer contributed to the overall network design was by deferring operations that 

was bounding-box specific to a later stage. After feeding an input picture into the deep 

network, it produces CNN feature maps that are intermediate in quality and have lower 

spatial dimensions than the original. The input feature map of the full picture and the 

coordinates of each ROI are sent into the ROI pooling layer. The features associated with a 

particular item may be roughly located using the ROI coordinates. However, due to the fact 

that each ROI might be of a different dimension, the features that are thus collected have 

variable spatial sizes.  

An ROI pooling layer takes in feature maps of varying sizes (representing various object 

proposals) and outputs one feature map of fixed size for each proposal; this is necessary 

since CNN layers can only process inputs with a set number of dimensions. One 

hyperparameter that stays constant throughout training is the fixed-size output dimensions. 

In particular, each ROI is partitioned into a collection of identically sized cells to get this 

consistent output size. The quantity of these cells matches the necessary output 

dimensions. The next step is to find the place in the output feature map that corresponds to 

the greatest value in each cell, which is done via max-pooling.  

A deep network's performance is substantially enhanced by the ROI pooling layer, which 

uses a single set of input feature maps to produce feature representations for each region 

proposal.  

3. Novel Pooling Methods 
 3.1. Multi-scale order-less pooling (MOP)  

―One method that has been suggested by Gong et al. [26] is multi-scale order-less pooling, 

or MOP. The discriminative capacity of CNNs is unaffected by this pooling strategy, 

which increases their invariance. To get the deep activation characteristics, MOP processes 

the whole signal as well as local patches. In order to have a better idea of the overall spatial 

layout, we record the activation characteristics of the complete signal. To get a better idea 

of the finer details in the picture and to make sure that everything stays the same, we record 

the activation features of individual patches. One way to combine activation characteristics 

from different patches is to utilise vectors of locally aggregated descriptors (VLAD) 

encoding [27]. At various sizes, this pooling layer extracts deep activation characteristics 

from local patches to start its work. because it catches more local, fine-grained features of 

the picture at higher scales and keeps the global spatial arrangement at coarser sizes, which 

is the entire image. The results were then aggregated at the smaller scales using VLAD 

encoding of the local patches [27]. A more invariant representation may be constructed 

with the aid of VLAD due to its order-less nature. Lastly, it creates a new picture 

representation by merging the initial global deep activations with the VLAD characteristics 

designed for smaller scales‖. You can see how this pooling mechanism works in Fig. 5. 
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Fig.5. Overview of multi-scale order-less pooling for CNN activations (MOP-CNN). It 

is the result of merging feature vectors from three distinct tiers: level 1 corresponds to 

the 4096-D CNN activation for the complete 256×256 image; level 2 is generated by 

extracting activations from 128×128 patches and VLAD pooling with a codebook of 100 

centres; and level 3 is formed in the same manner as level 2 but with 64 × 64 patches 

[26]. 

3.2. Super-pixel Pooling  

By clustering picture pixels according to low-level picture characteristics, super-

pixels are created, which are an over-segmentation of an image [28]. By lowering the 

amount of picture primitives needed for future processing, they offer a tessellation of 

image material that is perceptually significant. Computer vision algorithms like 

object detection [29, 30], semantic segmentation [31-34], saliency estimation [35-

38], optical flow estimation [39, 40], depth estimation [41, 42], and object tracking 

[43] make extensive use of super-pixel as a mid-level image representation because 

of its computational and representational efficiency. Figure 6 illustrates the super-

pixel segmentation model in action. 

 

Fig. 6.  An example of super-pixel segmentation [44] 

There is an introduction to super-pixel pooling in [45, 46]. Using super-pixel 

segmentation as a pooling architecture, Super-pixel Pooling Network (SPN) learns 

and infers semantic segmentation in a weakly supervised environment by reflecting 

low-level picture structures. 

 3.3. PCA Networks  

As a pooling stage, PCA is employed in [47]. Using principal component analysis 

(PCA), this approach teaches multistage filter banks. After that, we index and pool 

using block histograms and do basic binary hashing. Because of its simplicity and 

efficiency, this design has been given the name PCA network (PCANet). ―As a 
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pooling layer, PCA is employed in [48]. First suggested for use in audio processing 

was two-stage oriented principal component analysis (OPCA). One key distinction 

between OPCA and PCANet is that the latter does not use output layer coupling for 

hashing or local histograms. Opca becomes much more noise- and distortion-

resistant when fed the noise covariances. It is possible to improve the baseline 

PCANet's resilience to interclass variability by adding OPCA's strengths.  

3.4. Compact Bilinear Data Combination 

When it comes to various visual tasks like semantic segmentation, fine-grained 

identification, and face recognition, bilinear models have proven to be quite 

effective. Bilinear features, on the other hand, are impracticable for further analysis 

due to their large dimensionality, which can range from hundreds of thousands to 

several million. In [49], the topic of bilinear models for picture categorization is 

covered. Presented in [50] is a compact bilinear pooling approach. A low-

dimensional yet very discriminative picture representation is made possible by the 

compact bilinear pooling technique, which is learnt by means of end-to-end back 

propagation. A similar pooling strategy is employed in references [51–53].  

The state-of-the-art results in several fine-grained datasets were accomplished by 

using bilinear pooling to produce rich and order-less global representation for the 

final convolutional feature. The calculation of pairwise interactions between 

channels, however, leads to the high dimensionality problem; hence, solutions for 

reducing dimensions are suggested. In particular, compact bilinear pooling [50] 

suggested a sampling-based approximation strategy that may decrease feature 

dimensions by two orders of magnitude without a performance decline, while low-

rank bilinear pooling [54] suggested reducing feature dimensions before performing 

bilinear transformation. While second-order pooling convolutional networks [55] just 

employ bilinear features for channel weighting, they likewise advocate for the 

integration of bilinear interactions into convolutional blocks.  

Figure 7 is a block diagram depicting compact bilinear pooling. This pooling 

technique allows for a low-dimensional but very discriminative picture 

representation; it is learnt via end-to-end back-propagation. The top pipeline displays 

the activation at one spatial region with the Tensor Sketch projection applied, where 

∏ indicates circular convolution. The process of getting a global compact descriptor 

by sum pooling is illustrated in the bottom pipeline. 
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Fig. 7. Diagram of Compact bilinear pooling method for image classification 

[50]. 

 

3.5.Lead Asymmetric Pooling (LAP) 

The pooling layers of traditional 2-dimensional convolutional neural networks 

(CNNs) provide a single output for each non-overlapping sub-region after down-

sampling the input feature maps by a certain factor called the pooling factor. 

Importantly, due to the use of a single pooling factor, the conventional pooling 

method is unable to capture multi-scale patterns in multi-lead ECG. ―Several image 

recognition experiments have shown that multilevel pooling strategies can improve 

CNN performance by making better use of multi-scale features [26] and increasing 

the invariance of local characteristics [19, 21]. Therefore, the LAP method is meant 

to take the role of regular pooling in order to handle the variety of multi-lead ECG 

[25]. By dividing the levels in accordance with the number of pooling factors 

applied, LAP can use multi-scale features as an extension of this multilevel pooling 

approach. 

3.6.Edge-aware Pyramid Pooling 

Another approach to pooling is edge-aware pyramid pooling. The pedestrian motion 

detection task incorporates the edge-aware feature map, which was suggested by Xu 

et.al. [56] as a means of preserving additional information about edge structures. The 

goal of edge detection is to locate the borders and edges of objects in photographs 

taken in the wild. Segmentation and target detection rely on edge detection, a 

fundamental computer vision job. To aid with pedestrian contour identification and 

motion prediction tasks, the authors of [56] utilised supplementary information in 

conjunction with edge-related data. 

3.7.Spectral Pooling 

A novel pooling approach was proposed by Rippel et al. [57] that incorporates the 

concept of dimensionality reduction through frequency domain input cropping. The 

desired dimensions of the output feature map are denoted by ℎ  × �, and � is an 



 ISSN: 2320-0294 Impact Factor: 6.765  

32 International Journal of Engineering, Science and Mathematics 

http://www.ijmra.us, Email: editorijmie@gmail.com 

 

input feature map that belongs to � �×�. Following the application of the discrete 

Fourier transform (DFT) [58] on the input feature map, the centre of the frequency 

representation is chopped from the ℎ  × � size submatrix. Lastly, the ℎ  × � 

submatrix is transformed back into a spatial domain by applying inverse DFT. In 

comparison to max pooling, spectral pooling applies a linear lowpass filtering 

operation, which saves more information for the same output dimensionality. It gets 

around the issue of output map dimensionality being drastically reduced. 

 In most cases, lower frequencies account for a disproportionate share of the input 

spectrum power, whereas higher frequencies are more commonly used to encode 

noise [59]. The removal of high frequencies may be accomplished with minimum 

harm to input information due to the non-uniformity of spectrum power. Spectral 

pooling is based on the principle of matrix truncation, which uses quick Fourier 

transformation for convolutional kernels to decrease the computation cost in 

convolutional neural networks (CNNs) [60].  

In Figure 8, we can observe a spectral pooling scheme and a Max pooling one. When 

you want to shorten the Fourier basis, spectral pooling is the way to go. This allows 

for the selection of any possible output map dimensions and maintains much more 

information, as seen in Figure 8. 

 

Fig. 8. Approximations for different pooling schemes, for different factors of 

dimensionality reduction [57]. 

3.8.Row-Wise Max-Pooling 

The article introduces a novel method referred to as row-wise max pooling [61]. For 

each row of the input map, it finds the biggest value and adds it to the vector of 

outputs. Since the Row-wise max-pooling (RWMP) layer is insensitive to changes in 

the input map, its output is unaffected by the 3D form's orientation. The authors 
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introduce DeepPano, a deep representation for rotation-invariant 3D form retrieval 

and classification, in [61]. Representations of three-dimensional shapes, both learned 

and recovered, are the fundamental elements of panoramic perspectives. When it 

comes to retrieval and classification, DeepPano is far ahead of the pack. 

Additionally, experimental confirmation of the representation's rotation invariance 

has been obtained. 

3.9.Intermap Pooling  

Grouping the filters and then pooling the feature maps inside each group is what the 

Intermap Pooling (IMP) layer does [62]. One function of an IMP layer is to classify 

feature maps. Afterwards, the greatest activation value at each place is propagated by 

each group. In formal terms, Eq. 6 gives the output of the �th group, which consists 

of � consecutive feature maps:  

(𝑖,𝑗,𝑘) (𝑙) = 𝑚𝑎𝑥𝛾=−𝑟+1,…,0𝐻 ̃ (𝑖,𝑗,𝑘𝑟+𝛾) (𝑙)                                             (6)  

Let (𝒍) stand for input to the 𝑙th convolution layer having 𝐾 filters 

 Here, the feature maps of the several groups are combined after the filters in each 

group extract shared but spectrally different characteristics. Hence, the suggested 

IMP CNN is able to attain spectral variation insensitivity, which is indicative of 

various speakers and utterances. We show that the IMP CNN architecture is effective 

on many LVCSR tasks. By itself, the architecture's 12.7% WER on the SWB subset 

of the Hub5'2000 assessment test set is comparable with other top-tier approaches; 

this is without even considering speaker adaption strategies.  

3.10. Per-pixel Pyramid Pooling 

 One alternative to employing a small pooling window with a stride to obtain the 

appropriate receptive field size is to utilise a big pooling window. Loss of finer 

features can occur while using a single huge pooling window. As a result, new 

feature maps are generated by merging the results of many pooling operations with 

different window widths. Information from coarse to fine scales is contained in the 

feature maps that are produced. Without any breaks, the multiscale pooling 

procedure is executed on each pixel. In formal terms, per-pixel pyramid pooling is 

defined as follows: 

𝑃 4(𝐹, 𝑠) = [𝑃(𝐹, 𝑠1 ), … , 𝑃(𝐹, 𝑠𝑀)]                                                          (7)  

The pooling operation with size �� and stride one is represented as (�, ��), and � 

is a vector with � number of entries. Figure 9 only displays one channel of the feature 

maps because to space constraints, but the pooling process is the same for all of them. 
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Fig. 9. the 4P module with pooling size vector s = [5, 3, 1] is visualized 

3.11. Rank-based Average Pooling  

Because average pooling takes into account the average operation for near-zero 

negative activations, it may lose discriminative information and downplay larger 

activation levels. The loss of information occurs when max-pooling completely 

discards non-maximum activations. To get around these issues with max and average 

pooling losing essential information, rank-based average pooling (RAP) [64] can be 

employed. Eq. 8 represents the RAP's output:  

         𝑆𝑗 = 1 𝑡 ∑ 𝑎𝑖𝑖∈𝑅𝑗,𝑖9                                                             (8) 

where � is the rank threshold that decides which activations are used for averaging. 

A feature map's pooling region is denoted by �, while the index of each activation 

inside it is denoted by �. In this context, �� and �� denote the rank and value of 

activation, respectively. Here, maxpooling occurs when � = 1. In order for RAP to 

achieve a satisfactory compromise between average pooling and max pooling, it is 

necessary to correctly select �. You can exclude low-value or negative activations 

and retain high-response activations by using the median value of �. Figure 10 

shows a toy example of rank-based pooling in action. 

 

Fig. 10. ―A toy example illustrates rank-based pooling. Activations within each 

pooling region are first sorted according to their activation values to obtain the rank, 
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and then their rank is reasonably used by RAP, RWP, and RSP. Here Prob., Sam. and 

Wei. are used as the shorthand of probability, sample and weighting, 

respectively‖[64]. 

 

 

3.12. Weighted Pooling  

To account for both the response of each neuron and the utility of that response, 

Dong et.al. [65] proposed weighted pooling. What this means is that the pooling area 

assigns a weight to each neuron whose response is considered valuable. For each 

neuron, the response value is ��, where � = 1, …, � and � = 1, …, ℎ , and the 

pooling window has dimensions �� × �ℎ . Next, using Eq. 9, we can get the 

pooling results of the �� × �ℎ  window.  

       𝑃𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑤𝑖, ∗𝑎𝑖,𝑗                                                                                 (9)  

where ��,� represents the mass of ��,�. The suggested weighted pooling will 

improve the local representation by capturing various proportions of each neuron's 

local information in the original feature map.  

3.13. Genetic-Based Pooling  

The attention weights in the prior pooling approaches were generated using 

extremely thick layers. Thus, the size of the model that has to be trained increases. 

―Bhattacharjee et.al. [66] reduce the size and difficulty of training the model by using 

the Genetic Algorithm (GA) for pooling. In 1992, John Holland put forth the GA 

proposal [67]. It is a method for solving difficult optimisation issues that is based on 

the same principles as biological evolution. In GA, mutation, selection, and crossover 

are the three primary processes. By selecting parents from within a generation, we 

can increase our chances of producing offspring with desirable traits through 

processes like genetic crossover and mutation. Over the course of several 

generations, the population reaches a state of perfection. 

 

 As an initial step, this technique randomly generates a population of attention 

weights from the interval [0,1]. For every population set of attention weights, the 

model is trained and the appropriate loss functions are used to determine the error. 

Then, these attention weights are fine-tuned via generations until they cause the least 

amount of loss. In Algorithm 1, you may find the genetic pooling algorithm‖. 
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Algorithm 1: Genetic Pooling  

For every individual bag 

 • Initialise the population with P bags. • Assign instance weights �� to each bag. • 

Set the iteration number � to 1. • Set the bag number in the population � to 1. • 

While � is less than or equal to the maximum iteration number: - While � is less 

than or equal to �: - Calculate � � as the sum of �� � ℎ � � �. - Perform a feed-

forward pass on the neural network. - Calculate the loss. - Calculate the fitness value 

����. 

 • Terminate the loop. • Select the most suitable half of the population based on their 

fitness value. • Execute the crossover operation between the selected individuals, 

considering the type of crossover and the probability of crossover. • Perform the 

mutation operation. • Replace the least fit half of the population with the newly 

generated offspring. • Terminate the loop. • End the iteration. • Return the value of 

�.The user's text is not clear or understandable. 

4. Conclusion  

Now, there are a great deal of DNN structures available. In terms of architectural, these 

buildings are distinct from one another, although they share fundamental components. 

One of the fundamental components of a convolutional-based deep neural network 

(DNN) is the pooling layer. A great number of different approaches were suggested by 

researchers for the implementation of this layer. Within the scope of this article, we 

investigated a number of well-known and practical pooling approaches from 1989 to 

2020. After dividing those approaches into two categories—popular methods and new 

ways—we provided a brief description of each method. 
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