International Journal of Engineering, Science and Mathematics

Vol. 12 Issue 12, Dec 2023,
ISSN: 2320-0294 Impact Factor: 6.765
Journal Homepage: http://www.ijesm.co.in, Email: editorijmie @ gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed \&
Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

On Zero Power Valued Generalized Homoderivation in Semi Prime Rings

Rekha Rani*
Shivani Parashar ${ }^{* *}$

Abstract

The Purpose of this paper is to investigate commutativity of semi prime rings in case of generalized homoderivation of semi prime rings with Lie ideal.

Keywords:

Lie ideal, generalized homoderivation, commutator,
semi prime ring

Copyright © 2023 International Journals of Multidisciplinary Research Academy. All rights reserved.

Author correspondence:

Shivani Parashar,
Research Scholar, Department of Mathematics
S.V. College Aligarh

Email: shivani8parashar@gmail.com

1. Introduction

Throughout this paper, R denotes an associative ring with centre $Z(R)$. For any x, y $\in R$, the notation $[x, y]$ denotes commutator $x y-y x$ and x o y denotes an anti-commutator $x y+y x$. Recall that a ring R is prime if for any $x, y \in R, x R y=\{0\}$ implies that $x=0$ or $y=0$ and R is semi prime if $x R x=\{0\}$ implies that $x=0$. An additive subgroup U of R is said to be a Lie ideal of R if $[u, r] \in U$, for all $u \in$ U and $r \in R$. An additive mapping $d: R \rightarrow R$ is called a derivation if $d(x y)=d(x) y+x d(y)$, for all x, $y \in R$. In [4.], El-Soufi introduced the concept of homoderivation as follows: An additive mapping h : $R \rightarrow R$ is called a homoderivation if $h(x y)=h(x) h(y)+h(x) y+x h(y)$, for all $x, y \in R$. An example of such mapping is to let $h(x)=F(x)+x$, for all $x \in R$. where F is an endomorphism on R. Thus, it is clear that a homoderivation h is also a derivation if $h(x) h(y)=0$, for all $x, y \in R$.

Motivated by the definition of a homoderivation, the notion of generalized homoderivation was extended as follows : An additive mapping $F: R \rightarrow R$ is called a right generalized homoderivation derivation if there exists a homoderivation $d: R \rightarrow R$ such that $F(x y)=F(x) h(y)+$ $F(x) y+x h(y)$, for all $x, y \in R$ and F is called a left generalized homoderivation if there exists a

[^0]homoderivation $h: R \rightarrow R$ such that $F(x y)=h(x) F(y)+h(x) y+x F(y)$, for all $x, y \in R . F$ is said to be a generalized homoderivation associated with homoderivation h if it is both a left and a right generalized homoderivation associated with homoderivation h. If $S \subseteq R$, then a mapping $F: R \rightarrow R$ preserves S if $F(S) \subseteq S$. A mapping $F: R \rightarrow R$ is zero - power valued on S if F preserves S and for each $x \in S$, there exist a positive integer $n(x)>1$ such that $F^{n(x)}(x)=0$.

In [3.], Daif and Bell proved that if R is a semiprime ring U a nonzero ideal of R and d a derivation of R such that $d([x, y])=[x, y]$, for all $x, y \in U$, then $U \in Z$. In 2007, Ashraf et al [2] prove that a prime ring R must be commutative if R satisfies any one of the following conditions
(i) $F(x y)=x y$, (ii) $F(x) F(y)=x y$, where F isa generalized derivation of R and I is a nonzero two sided ideal of R. Recently in 2023, Boua \& Sogutcu [9] investigate the commutative of semiprime rings if R satisfies the following conditions: (i) $F[u, v]= \pm[u, v]$ (ii) $F[u, v]=u 0 v$, for all $u, v \in I$. In this paper, we prove these results for generalized homoderivation with Lie ideals in semi prime rings.

1. Preliminaries

We shall use frequently the following basic commutator identities:

$$
\begin{aligned}
& {[a, b c]=b[a, c]+[a, b] c, } \\
& {[a b, c]=[a, c] b+a[b, c] } \\
a o(b c)= & (a o b) c-b[a, c]=b(a o c)+[a, b] c, \\
(a b) o c= & a(b o c)-[a, c] b=(a o c) b+a[b, c]
\end{aligned}
$$

We began with the following lemma which is required to prove our results:

Lemma 2.1 [8, Corollary 2.1]. Let R be a 2 -torsion free semi- prime r ing, U a noncentral Lie ideal of R and $a, b \in U$.
(i) If $a U a=\{0\}$, then $a=0$.
(ii) If $a U=\{0\}$, (or $U a=\{0\}$), then $a=0$.

2. Main Results

Theorem 3.1. Let R be a semi-prime ring with $\operatorname{Char} R \neq 2$ and U a nonzero Lie ideal of R. Suppose that R admits a right generalized homoderivation F associated with a homoderivation h of R such that $h(U) \subseteq U$. If $F([u, v])=(v \circ u)$, for all $u, v \in U$, then h is commuting map on U.
Proof. we have

$$
\begin{equation*}
F([u, v])=(v \circ u), \text { for all } u, v \in U . \tag{3.1}
\end{equation*}
$$

Replacing v by $2 v u$ in equations (3.1), we obtain that

$$
\begin{aligned}
& F([u, v u])=(v u \text { o } u), \text { for all } u, v \in U . \\
& F([u, v] u)=(v \circ u) u, \text { for all } u, v \in U .
\end{aligned}
$$

i.e.,

$$
\begin{gathered}
F[u, v] h(u)+F[u, v] u+[u, v] h(u)=(v o u) u, \quad \text { for all } u, v, \epsilon U . \\
F[u, v](h(u)+u)+[u, v] h(u)=(v o u) u, \quad \text { for all } u, v \in U .
\end{gathered}
$$

Since h is zero-power valued on U, there exists an integer $n(x)>1$ such that $h^{n(x)}(x)=0$, for all $x \in U$. Replacing u by $u-h(u)+h^{2}(u)+\ldots .+(-1)^{n(u-1)} h^{n(u)-1}(u)$ in the above equation, we get

$$
F[u, v] u+[u, v] h(u)=(v o u) u, \quad \text { for all } u, v \in U .
$$

Using the given hypothesis, the above relation yields that

$$
\begin{equation*}
[u, v] h(u)=0, \text { for all } u, v \in U . \tag{3.2}
\end{equation*}
$$

Again, replacing v by $2 v w$ in equation (3.2) and using the fact that $\operatorname{Char} R \neq 2$, we get

$$
[u, v w] h(u)=0, \quad \text { for all } u, v, w \in U .
$$

which gives that $(v[u, w]+[u, v] w) h(u)=0$, for all $u, v, w \in U$, i.e., $v[u, v] h(u)+[u, v] w h(u)=0$, for all $u, v, w \in U$. Using the equation (3.2), the above relation yields that $[u, v] w h(u)=0$, for all $u, v, w \in$ U.

Now replace v by $h(u)$, we get

$$
\begin{equation*}
[u, h(u)] w h(u)=0, \text { for all } u, w \in U . \tag{3.3}
\end{equation*}
$$

Right multiplication of equation (3.3) by u, we get

$$
\begin{equation*}
[u, h(u)] w h(u) u=0, \text { for all } u, w \in U . \tag{3.4}
\end{equation*}
$$

Replacing w by $2 w u$ in equation (3.3) and using the fact that Char $R \neq 2$, we get

$$
\begin{equation*}
[u, h(u)] w u h(u)=0, \text { for all } u, w \in U . \tag{3.5}
\end{equation*}
$$

Now Subtracting equation (3.4) from equation (3.5), we arrived that

$$
\begin{gathered}
{[u, h(u)] w u h(u)-[u, h(u)] w h(u) u=0, \text { for all } u, w \in U .} \\
{[u, h(u)] w(u h(u) u-h(u) u)=0, \text { for all } u, w \in U .} \\
{[u, h(u)] w[u, h(u)]=0, \text { for all } u, w \in U .} \\
{[u, h(u)] U[u, h(u)]=0, \text { for all } u, \epsilon U .}
\end{gathered}
$$

Using Lemma 2.1, we obtain that $[u, h(u)]=0$, for all $u \in U$. Hence h is commuting map on U.

Theorem 3.2. Let R be a semi-prime ring with Char $\mathrm{R} \neq 2$ and U a nonzero Lie ideal of R. Suppose that R admits a right generalized homoderivation F associated with a homoderivation h of R such that $h(U) \subseteq U$. If $F([u, v])=-(v \circ u)$, for all $u, v \in U$, then h is commuting map on U.

Proof. we have,

$$
\begin{equation*}
F([u, v])=-(v \circ u), \text { for all } u, v \in U . \tag{3.6}
\end{equation*}
$$

Replacing v by $2 v u$ in equations (3.6) and using the fact that $\operatorname{CharR} \neq 2$, we obtain that

$$
\begin{gathered}
F([u, v u])=-(v u \text { o } u), \text { for all } u, v \in U . \\
F([u, v] u)=-(v \text { o } u) u, \text { for all } u, v \in U .
\end{gathered}
$$

i.e.

$$
\begin{aligned}
& F[u, v] h(u)+F([u, v]) u+[u, v] h(u)=-(v o u) u, \text { for all } u, v \in U . \\
& F[u, v](h(u)+u)+[u, v] h(u)=-(v o u) u, \text { for all } u, v \in U .
\end{aligned}
$$

Since h is zero-power valued on U, there exists an integer $n(x)>1$ such that $h^{n(x)}(x)=0$, for all $x \in U$. Replacing u by $u-h(u)+h^{2}(u)+\ldots .+(-1)^{n(u-1)} h^{n(u)-1}(u)$ in the above equation, we get

$$
F[u, v] u+[u, v] h(u)=-(v \text { o } u) u, \text { for all } u, v \in U .
$$

Using the equation (3.6), the above relation yields that

$$
\begin{equation*}
[u, v] h(u)=0, \text { for all } u, v \in U \tag{3.7}
\end{equation*}
$$

Proceeding in the same manner as in the proof of Theorem 3.1., we get the required result.
Theorem 3.3. Let R be a semi-prime ring with Char $R \neq 2$ and U a nonzero Lie ideal of R. Suppose that R admits a right generalized homoderivation F associated with a homoderivation h of R such that $h(U) \subseteq U$. If $F([u, v])=[v, u]$, for all $u, v \in U$, then h is commuting map on U.

Proof. we have,

$$
\begin{equation*}
F([u, v])=[v, u], \text { for all } u, v, \epsilon U . \tag{3.8}
\end{equation*}
$$

Replacing v by $2 v u$ in equations (3.8) and using the fact that Char $\mathrm{R} \neq 2$, we obtain that

$$
\begin{aligned}
& F([u, v u])=[v u, u], \text { for all } u, v \in U . \\
& F([u, v] u)=[v, u] u, \text { for all } u, v \in U .
\end{aligned}
$$

i.e.,

$$
\begin{gathered}
F[u, v] h(u)+F[u, v] u+[u, v] h(u)=[v, u] u, \text { for all } u, v \in U . \\
F[u, v](h(u)+u)+[u, v] h(u)=[v, u] u, \text { for all } u, v \in U .
\end{gathered}
$$

Since h is zero-power valued on U, there exists an integer $n(x)>1$ such that $h^{n(x)}(x)=0$, for all $x \in U$. Replacing u by $u-h(u)+h^{2}(u)+\ldots .+(-1)^{n(u-1)} \underline{h}^{n(u)-1}(u)$ in the above equation, we get

$$
\begin{gathered}
F[u, v] u+[u, v] h(u)=[v, u] u, \text { for all } u, v \in U . \\
F[u, v] u+[u, v] h(u)=[v, u] u, \text { for all } u, v \in U .
\end{gathered}
$$

Using the given hypothesis, the above relation yields that

$$
\begin{equation*}
[u, v] h(u)=0, \text { for all } u, v \in U . \tag{3.9}
\end{equation*}
$$

Proceeding in the same manner as in the proof of Theorem 3.1., we obtain the required result.
Theorem 3.4. Let R be a semi-prime ring with Char $R \neq 2$ and U a nonzero Lie ideal of R. Suppose that R admits a right generalized homoderivation F associated with a homoderivation h of R such that $h(U) \subseteq U$. If $F([u, v])=-[v, u]$, for all $u, v \in U$, then h is commuting map on U.

Proof. we have,

$$
\begin{equation*}
F([u, v])=-[v, u], \text { for all } u, v \in U . \tag{3.10}
\end{equation*}
$$

Replacing v by $2 v u$ in equations (3.10) and using the fact that Char $\mathrm{R} \neq 2$, we obtain that

$$
\begin{aligned}
& F([u, v u])=-[v u, u], \text { for all } u, v \in U . \\
& F([u, v] u)=-[v, u] u, \text { for all } u, v \in U .
\end{aligned}
$$

i.e.,

$$
\begin{gathered}
F[u, v] h(u)+F[u, v] u+[u, v] h(u)=-[v, u] u, \text { for all } u, v \in U . \\
F[u, v](h(u)+u)+[u, v] h(u)=-[v, u] u, \text { for all } u, v \in U .
\end{gathered}
$$

Since h is zero-power valued on U, there exists an integer $n(x)>1$ such that $h^{n(x)}(x)=0$, for all $x \in$ U. Replacing u by $u-h(u)+h^{2}(u)+\ldots .+(-1)^{n(u-1)} h^{n(u)-1}(u)$ in the above equation, we get

$$
F[u, v] u+[u, v] h(u)=-[v, u] u, \text { for all } u, v \in U .
$$

Using the given hypothesis, the above relation yields that

$$
\begin{equation*}
[u, v] h(u)=0, \text { for all } u, v \in U \tag{3.11}
\end{equation*}
$$

Proceeding in the same manner as in the proof of Theorem 3.1, we obtain the srequired result.
Theorem 3.5. Let R be a semi-prime ring with Char $\mathrm{R} \neq 2$ and U a nonzero Lie ideal of R. Suppose that R admits a right generalized homoderivation F associated with a homoderivation h of R such that $h(U) \subseteq U$. If $F(u \mathrm{o} v)=[v, u]$, for all $u, v \in U$, then h is commuting map on U.

Proof. we have,

$$
\begin{equation*}
F(u \circ v)=[v, u], \text { for all } u, v, \in U . \tag{3.12}
\end{equation*}
$$

Replacing v by $2 v u$ in equations (3.12) and using the fact that $\operatorname{Char} R \neq 2$, we obtain that

$$
\begin{aligned}
& F(u \text { o } v u)=[v u, u], \text { for all } u, v \in U . \\
& F((u \circ v) u)=[v, u] u, \text { for all } u, v \in U .
\end{aligned}
$$

i.e.,

$$
\begin{aligned}
& F(u \text { ov }) h(u)+F(u \circ v) u+(u \text { ov }) h(u)=[v, u] u, \text { for all } u, v \in U . \\
& F(u \text { ov })(h(u)+u)+(u \text { ov }) h(u)=[v, u] u, \text { for all } u, v \in U .
\end{aligned}
$$

Since h is zero-power valued on U, there exists an integer $n(x)>1$ such that $h^{n(x)}(x)=0$, for all $x \in U$. Replacing u by $u-h(u)+h^{2}(u)+\ldots .+(-1)^{n(u-1)} h^{n(u)-1}(u)$ in the above equation, we get

$$
F((u \circ v) u)+(u \circ v) h(u)=[v, u] u, \quad \text { for all } u, v \in U .
$$

Using the equation (3.12), the above relation yields that

$$
\begin{equation*}
(u \circ v) h(u)=0, \text { for all } u, v \in U \tag{3.13}
\end{equation*}
$$

Again, replacing v by $2 w v$ in equation (3.13) and using the fact that Char $R \neq 2$, we get $(u \circ w v) h(u)=0$, which gives that $(w(u o v)+[u, w] v) h(u)=0$, for all $u, v, w \in U$, i.e., $w(u \circ v) h(u)+[u, w] v h(u)=0$, for all $u, v, w \in U$. Using the equation (3.13), the above relation yields that $[u, w] v h(u)=0$, for all $u, v, w \in U$.

Proceeding in the same manner as in the proof of Theorem 3.1., we obtain the required result.
Theorem 3.6. Let R be a semi-prime ring with Char $R \neq 2$ and U a nonzero Lie ideal of R. Suppose that R admits a right generalized homoderivation F associated with a homoderivation h of R such that $h(U) \subseteq U$. If $F(u \mathrm{o} v)=-[v, u]$, for all $u, v \in U$, then h is commuting map on U.

Proof. we have,

$$
\begin{equation*}
F(u \circ v)=-[v, u], \text { for all } u, v, \epsilon U . \tag{3.14}
\end{equation*}
$$

Replacing v by $2 v u$ in equations (3.14), we obtain that

$$
F(u \text { o } v u)=-[v u, u], \quad \text { for all } u, v \in U .
$$

i.e.,

$$
F((u \circ v) u)=-[v, u] u, \quad \text { for all } u, v \in U
$$

Or,

$$
\begin{aligned}
& F(u \circ v) h(u)+F(u \circ v) u+(u \circ v) h(u)=-[v, u] u, \quad \text { for all } u, v \in U . \\
& F(u \circ v)(h(u)+u)+(u \circ v) h(u)=-([v, u] u), \quad \text { for all } u, v \in U .
\end{aligned}
$$

Since h is zero-power valued on U, there exists an integer $n(x)>1$ such that $h^{n(x)}(x)=0$, for all $x \in U$. Replacing u by $u-h(u)+h^{2}(u)+\ldots .+(-1)^{n(u-1)} h^{n(u)-1}(u)$ in the above equation, we get

$$
F((u \circ v) u)+(u \circ v) h(u)=-[v, u] u, \text { for all } u, v \in U .
$$

Using the equation (3.14), the above relation yields that

$$
\begin{equation*}
(u \circ v) h(u)=0, \text { for all } u, v \in U \tag{3.15}
\end{equation*}
$$

Again, replacing v by $2 w v$ in equation (3.15) and using the fact that Char $\mathrm{R} \neq 2$, we get (u o $w v$) $h(u)$ $=0$, which gives that $(w(u \circ v)+[u, w] v) h(u)=0$, for all $u, v, w \in U$, i.e., $w(u \circ v) h(u)+[u, w] v h(u)=0$, for all $u, v, w \in U$. Using the equation (3.15), the above relation yields that $[u, w] v h(u)=0$, for all $u, v, w \in U$. Now the proof runs as Theorem 3.1.

Theorem 3.7. Let R be a semi-prime ring with $\operatorname{Char} R \neq 2$ and U a nonzero Lie ideal of R. Suppose that R admits a right generalized homoderivation F associated with a homoderivation h of R such that $h(U) \subseteq U$. If $F([u, v])+h([u, v])+[u, v]=0$, for all $u, v \in U$, then h is commuting map on U.

Proof. we have,

$$
\begin{equation*}
F([u, v])+h([u, v])+[u, v]=0, \text { for all } u, v \in U . \tag{3.16}
\end{equation*}
$$

Replacing v by $2 v u$ in equations (3.16) and using the fact that $C h a r R \neq 2$, we obtain that

$$
\begin{aligned}
& F([u, v u])+h([u, v u])+[u, v u]=0, \text { for all } u, v \in U . \\
& \text { i.e., } \quad F([u, v] u)+h([u, v] u)+[u, v] u=0, \text { for all } u, v \in U . \\
& F([u, v]) h(u)+F([u, v]) u+[u, v] h(u)+h[u, v] h(u)+h([u, v]) u+[u, v] h(u)+ \\
& {[u, v] u=0,}
\end{aligned} \quad \begin{aligned}
& F([u, v])(h(u)+u)+[u, v] h(u)+h[u, v](h(u)+u)+[u, v] h(u)+[u, v] u=0,
\end{aligned}
$$

Since h is zero-power valued on U, there exists an integer $n(x)>1$ such that $h^{n(x)}(x)=0$, for all $x \in U$. Replacing u by $u-h(u)+h^{2}(u)+\ldots .+(-1)^{n(u-1)} h^{n(u)-1}(u)$ in the above equation, we get

$$
\begin{gathered}
F([u, v]) u+[u, v] h(u)+h([u, v]) u+[u, v] h(u)+[u, v] u=0, \text { for all } u, v \in U . \\
F([u, v]) u+h([u, v]) u+2[u, v] h(u)+[u, v] u=0, \text { for all } u, v \in U .
\end{gathered}
$$

Using the given hypothesis, the above relation yields that $2[u, v] h(u)=0$, for all $u, v \in U$. Since R is of $\operatorname{Char} R \neq 2$, we have $[u, v] h(u)=0$, for all $u, v \in U$.

Now the proof runs as the proof of Theorem 3.1, we get the required result.

Theorem 3.8. Let R be a semi-prime ring with Char $\mathrm{R} \neq 2$ and U a nonzero Lie ideal of R. Suppose that R admits a right generalized homoderivation F associated with a homoderivation h of R such that $h(U) \subseteq U$. If $F([u, v])+h([u, v])+(u o v)=0$, for all $u, v \in U$, then h is commuting map on U.

Proof. we have

$$
\begin{equation*}
F([u, v])+h([u, v])+(u \text { ov } v)=0, \text { for all } u, v, \epsilon U . \tag{3.17}
\end{equation*}
$$

Replacing v by $2 v u$ in equations (3.18) and using the fact that $\operatorname{Char} R \neq 2$, we obtain that

$$
\begin{gathered}
F([u, v u])+h([u, v u])+(u \text { ov } u)=0, \text { for all } u, v \in U . \\
F([u, v]) u+h([u, v]) u+(u \text { ov }) u=0, \text { for all } u, v \in U . \\
F([u, v]) h(u)+F([u, v]) u+[u, v] h(u)+h([u, v]) h(u)+h([u, v]) u+[u, v] h(u) \\
+(u o v) u=0, \\
F[u, v](h(u)+u)+[u, v] h(u)+h([u, v])(h(u)+u)+[u, v] h(u)+(u \text { ov } v) u \\
=0, \text { for all } u, v \in U .
\end{gathered}
$$

Since h is zero-power valued on U, there exists an integer $n(x)>1$ such that $h^{n(x)}(x)=0$, for all $x \in U$. Replacing u by $u-h(u)+h^{2}(u)+\ldots .+(-1)^{n(u-1)} h^{n(u)-1}(u)$ in the above equation, we get

$$
\begin{gathered}
F([u, v] u)+[u, v] h(u)+h([u, v] u)+[u, v] h(u)+(u \text { ov }) u=0, \text { for all } u, v \in U . \\
F([u, v] u)+h([u, v] u)+2[u, v] h(u)+(u \circ v) u=0, \text { for all } u, v \in U .
\end{gathered}
$$

Using the given hypothesis, the above relation yields that $2[u, v] h(u)=0$, for all $u, v \in U$. Since R is semi prime ring with Char $R \neq 2$,

$$
\begin{equation*}
[u, v] h(u)=0, \text { for all } u, v \in U \tag{3.18}
\end{equation*}
$$

Proceeding in the same manner as in the proof of Theorem 3.1, we obtain the required result.
Theorem 3.9. Let R be a free semi-prime ring with $\operatorname{Char} \mathrm{R} \neq 2$ and U a nonzero Lie ideal of R. Suppose that R admits a right generalized homoderivation F associated with a homoderivation h of R such that $h(U) \subseteq U$. If $F(u \circ v)+h(u \circ v)+(u \circ v)=0$, for all $u, v \in U$, then h is commuting map on U.

Proof. we have,

$$
\begin{equation*}
F(u \circ v)+h(u \circ v)+(u \circ v)=0, \text { for all } u, v \in U . \tag{3.19}
\end{equation*}
$$

Replacing v by $2 v u$ in equations (3.20) and using the fact that $\operatorname{Char} R \neq 2$, we obtain that
$F(u \circ v u)+h(u \circ v u)+(u \circ v u)=0$, for all $u, v \in U$.
$F((u \circ v) u-v[u, u])+h((u \circ v) u-v[u, u])+((u$ ov $) u-v[u, u])=0$, for all $u, v \in U$.
i.e.

$$
\begin{gathered}
F((u \circ v) u)+h((u \circ v) u)+(u \circ v) u=0, \text { for all } u, v \in U . \\
F(u o v) h(u)+F(u o v) u+(u o v) h(u)+h(u o v) h(u)+h(u o v) u+(u o v) h(u)+(u o v) u=0, \\
F(u o v)(h(u)+u)+(u o v) h(u)+h(u o v)(h(u)+u)+(u o v) h(u)+(u o v) u=0,
\end{gathered}
$$

Since h is zero-power valued on U, there exists an integer $n(x)>1$ such that $h^{n(x)}(x)=0$, for all $x \in U$. Replacing u by $u-h(u)+h^{2}(u)+\ldots .+(-1)^{n(u-1)} h^{n(u)-1}(u)$ in the above equation, we get

$$
F(u \circ v) u+(u \circ v) h(u)+h(u \circ v) u+(u \circ v) h(u)+(u \circ v) u=0, \text { for all } u, v \in U .
$$

Using the given hypothesis, the above relation yields that $2\left[\begin{array}{ll}u & 0 v\end{array}\right] h(u)=0$, for all $u, v \in U$. Since \mathbf{R} is a semi prime ring with Char $R \neq 2$,

$$
\begin{equation*}
(u \circ v) h(u)=0, \text { for all } u, v \in U \tag{3.20}
\end{equation*}
$$

Again, replacing v by $2 w v$ in equation (3.20) and using the fact that $\operatorname{Char} R \neq 2$, we get (uov) $h(u)=$ 0 , for all $u, v \in U$ which gives that $(w(u \circ v)+[u, w] v) h(u)=0$, for all $u, v, w \in U$, i.e., $w(u \circ v) h(u)+[u$, $w] v h(u)=0$, for all $u, v, w \in U$. Using equation (3.20), the above relation yields that $[u, w] v h(u)=0$, for all $u, v, w \in U$. Now follow the proof of Theorem 3.1, we get the required result.

References

[1] M. Ashraf and N. Rehman, "On derivation and commutativity in prime rings", East-west J. Math. 3(1), 87-91, (2001).
[2] M. Ashraf, A. Ali and S. Ali, "Some commutativity theorems for rings with generalized derivations", Southeast Asian Bull. Math., 31(3), 415-421, (2007).
[3] M. N. Daif and H. E. Bell, "Remarks on derivations on semiprime rings," IJMMS, 15 (1), 205-206, (1992).
[4] El-Soufi, M. M., "Rings with some kinds of mappings," M.Sc.Thesis, Cairo University, Branch of Fayoum, Cairo, Egypt, (2000).
[5] N. Rehman, M. Mozumder, R. Abbasi., "Homoderivations on ideals of prime and semiprime rings", The Aligarh Bulletin of Mathematics, 38(1-2), 77-87, (2019).
[6] E. K. Sogutcu, and O. Golbasi, "Lie ideals of semiprime rings with generalized derivations", Advyaman University Journal of Science, 8(1), 1-12, (2018).
[7] M. N. Daif, and H. E. Bell, "On commutativity and strong commutativity- preserving maps", Canad. Math. Bull. 37(4), 443-447, (1994).
[8] M. Hongan, N. Rehman, R. Mohammed and Al. Omary, "Lie Ideals and Jordan Triple derivations in Rings." Rend. Sem. Mat. Unv. Padova. 125, 147-156, (2011).
[9] A. Boua and E.K. Sogutcu, " Semiprime Rings with Generalized Homoderivations." Bol. Soc. Paran. Mat. (41) (2023).

[^0]: * Professor, Department of Mathematics, S.V.College, Aligarh,U.P., INDIA
 ${ }^{* *}$ Research Scholar, Department of Mathematics, S.V.College, Aligarh,U.P., INDIA

