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1. Introduction  

Throughout this paper, R denotes an associative ring with centre Z(R). For any x, y ϵ R, the 

notation [x, y] denotes commutator xy − yx and x o y denotes an anti-commutator xy + yx. Recall that a ring 

R is prime if for any x, y ϵ R, xRy = {0} implies that x = 0 or y = 0 and R is semi prime if xRx = {0} 

implies that x = 0. An additive subgroup U of R is said to be a Lie ideal of R if [u, r] ϵ U, for all u ϵ 

U and r ϵ   R. An additive mapping d : R→R is called a derivation if d(xy)= d(x)y + xd(y), for all x, 

y ϵ R. In [4.], El-Soufi introduced the concept of homoderivation as follows: An additive mapping h : 

R→R is called a homoderivation if h(xy) = h(x)h(y) + h(x)y + xh(y), for all x, y ϵ R. An example of 

such mapping is to let h(x) = F(x) + x, for all x ϵ R. where F is an endomorphism on R. Thus, it is clear 

that a homoderivation h is also a derivation if h(x)h(y) = 0, for all x, y ϵ R. 

Motivated by the definition of a homoderivation, the notion of generalized homoderivation was 

extended as follows : An additive mapping F : R→R is called a right generalized 

homoderivation derivation if there exists a homoderivation d : R→R such that F(xy) = F(x)h(y) + 

F(x)y + xh(y), for all x, y ϵ R and F is called a left generalized homoderivation if there exists a 
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̸ 

homoderivation h : R→R such that F(xy) = h(x)F(y) + h(x)y +xF(y), for all x, y ϵ R. F is 

said to be a generalized homoderivation associated with homoderivation h if it is both a left and a 

right generalized homoderivation associated with homoderivation h. If S ⊆ R, then a mapping 

F:R → R preserves S if F (S) ⊆ S. A mapping F : R → R is zero - power valued on S if F 

preserves S and for each x ϵ S, there exist a positive integer n(x) > 1 such that Fn(x)(x) = 0. 

In [3.], Daif and Bell proved that if R is a semiprime ring  U a nonzero ideal of R and d a derivation 

of  R such that   d([x, y]) = [x, y], for all x, y ϵ U, then U ϵ Z. In 2007, Ashraf et al [2] prove that a prime 

ring R must be commutative if R satisfies any one of the following conditions 

 (i) F (xy) = xy, (ii) F (x)F (y) = xy, where F is a generalized derivation of R and I is a nonzero 

two sided ideal of R. Recently in 2023, Boua & Sogutcu [9] investigate the commutative of semiprime 

rings if R satisfies the following conditions : (i) F[u,v] = ±[u,v] (ii) F [u,v] = uov, for all u, v ϵ I. In this 

paper, we prove these results for generalized homoderivation with Lie ideals in semi prime rings.  

 

1. Preliminaries 

We shall use frequently the following basic commutator identities: 

 

[𝑎, 𝑏𝑐]  =  𝑏[𝑎, 𝑐]  + [𝑎, 𝑏]𝑐, 

[𝑎𝑏, 𝑐]  =  [𝑎, 𝑐]𝑏 +  𝑎[𝑏, 𝑐], 

𝑎 𝑜 (𝑏𝑐)  =  (𝑎 𝑜 𝑏)𝑐 −  𝑏[𝑎, 𝑐]  =  𝑏(𝑎 𝑜 𝑐)  +  [𝑎, 𝑏]𝑐, 

(𝑎𝑏) 𝑜 𝑐 =  𝑎(𝑏 𝑜 𝑐)  −  [𝑎, 𝑐]𝑏 =  (𝑎 𝑜 𝑐)𝑏 +  𝑎[𝑏, 𝑐] 

We began with the following lemma which is required to prove our results: 

 

Lemma 2.1 [8, Corollary 2.1]. Let R be a 2-torsion free semi- prime r ing, U a  noncentral 

Lie ideal of R and a, b ϵ U . 

(i) If aUa = {0}, then a = 0. 

(ii) If aU = {0}, (or Ua = {0}), then a = 0. 

 

2. Main Results 

 

Theorem 3.1.  Let R  be a semi-prime ring with CharR≠2 and U a nonzero Lie ideal of R. Suppose that 

R  admits a right generalized  homoderivation  F  associated with a homoderivation h of R such that 

h(U ) ⊆ U. If F ( [u, v] ) = (v o u), for all u, v ϵ U, then h is commuting map on U . 

Proof. we have  

                                                      𝐹([𝑢, 𝑣])  =  (𝑣 𝑜 𝑢), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣 𝜖 𝑈.                                                     (3.1)                                                                                                                                                     

Replacing v by 2vu in equations (3.1), we obtain that 
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        𝐹 ( 𝑢, 𝑣𝑢 )  =  (𝑣𝑢 𝑜 𝑢),   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣 𝜖 𝑈 . 

           𝐹 ( 𝑢, 𝑣 𝑢)  =   𝑣 𝑜 𝑢 𝑢,    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣 𝜖 𝑈.  

i.e., 

𝐹  𝑢, 𝑣 ℎ  𝑢 +  𝐹  𝑢, 𝑣 𝑢 +  𝑢, 𝑣 ℎ  𝑢 =   𝑣 𝑜 𝑢 𝑢, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣, 𝜖 𝑈. 

𝐹 [𝑢, 𝑣](ℎ(𝑢)  +  𝑢)  + [𝑢, 𝑣]ℎ(𝑢)  =  (𝑣 𝑜 𝑢) 𝑢, 𝑓𝑜𝑟 𝑎𝑙𝑙  𝑢, 𝑣 𝜖 𝑈. 

Since h is zero-power valued on U, there exists an integer n(x) > 1 such that hn(x)(x) = 0, for all x ϵ U. 

Replacing u by u―h(u) + h2(u) + .... + (―1)n(u−1)hn(u)−1(u) in the above equation, we get 

𝐹 [𝑢, 𝑣] 𝑢 + [𝑢, 𝑣]ℎ(𝑢)  =  (𝑣 𝑜 𝑢) 𝑢, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣 𝜖 𝑈. 

Using the given hypothesis, the above relation yields that 

[𝑢, 𝑣]ℎ(𝑢) = 0,   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣 𝜖  𝑈.                                                                    (3.2)                                         

Again, replacing v by 2vw in equation (3.2) and using the fact that CharR≠2, we get 

 𝑢, 𝑣𝑤 ℎ 𝑢 =  0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣, 𝑤 𝜖 𝑈. 

which gives that (v[u, w] +[ u, v]w)h(u) = 0, for all u, v, w ϵ U, i.e., v[u, v]h(u) + [u, v]wh(u) = 0, for all 

u, v, w ϵ U . Using the   equation (3.2), the above relation yields that [u, v]wh(u) = 0, for all u, v, w ϵ 

U . 

Now replace v by h(u), we get 

                     [𝑢, ℎ(𝑢)]𝑤ℎ(𝑢)  =  0,   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑤 𝜖 𝑈.                                                                      (3.3)                                                                                                                  

Right multiplication of equation (3.3) by u,   we get     

[𝑢, ℎ(𝑢) ]𝑤ℎ(𝑢)𝑢 =  0,   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑤 𝜖 𝑈.                                                                                     (3.4) 

Replacing w by 2wu in equation (3.3) and using the fact that CharR≠2, we get 

[𝑢, ℎ(𝑢)]𝑤𝑢 ℎ(𝑢)  =  0,   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑤 𝜖 𝑈.                                                                                  (3.5) 

Now Subtracting equation (3.4) from equation (3.5), we arrived that  

 𝑢, ℎ 𝑢  𝑤𝑢ℎ 𝑢  −   𝑢, ℎ 𝑢  𝑤ℎ 𝑢 𝑢 =  0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑤 𝜖 𝑈. 

 𝑢, ℎ 𝑢  𝑤 𝑢ℎ 𝑢 𝑢 −   ℎ 𝑢 𝑢 =  0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑤 𝜖  𝑈. 

 𝑢, ℎ 𝑢  𝑤 𝑢, ℎ 𝑢  =  0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑤 𝜖 𝑈. 

[𝑢, ℎ(𝑢)] 𝑈 [𝑢, ℎ(𝑢)]  =  0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝜖 𝑈. 

Using Lemma 2.1, we obtain that [u, h(u)] = 0, for all u ϵ U. Hence h is commuting map on U. 

 

Theorem 3.2.  Let R be a semi-prime ring with Char R ≠ 2 and U a nonzero Lie ideal of R. Suppose 

that R  admits  a  right  generalized homoderivation  F associated with a homoderivation h of R such 

that h(U ) ⊆ U. If F ([u, v]) = − (v o u), for all u, v ϵ U,   then h is commuting map on U.  

Proof. we have, 

𝐹 ( 𝑢, 𝑣 )  =  − (𝑣 𝑜 𝑢), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣 𝜖 𝑈.                                                                    (3.6) 

Replacing v by 2vu in equations (3.6) and using the fact that CharR ≠ 2, we obtain that 

                 𝐹 ( 𝑢, 𝑣𝑢 )  =  − (𝑣𝑢 𝑜 𝑢), 𝑓𝑜𝑟 𝑎𝑙𝑙   𝑢, 𝑣 𝜖  𝑈. 

                                𝐹 ( 𝑢, 𝑣 𝑢)  =  −(𝑣 𝑜 𝑢 )𝑢, 𝑓𝑜𝑟 𝑎𝑙𝑙  𝑢, 𝑣 𝜖 𝑈. 

i.e. 
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𝐹 [𝑢, 𝑣]ℎ(𝑢)  +  𝐹 ([𝑢, 𝑣])𝑢 + [𝑢, 𝑣]ℎ(𝑢)  =  −(𝑣 𝑜 𝑢)𝑢, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣 𝜖 𝑈. 

𝐹 [𝑢, 𝑣] (ℎ(𝑢)  +  𝑢)  + [𝑢, 𝑣]ℎ(𝑢)  =  −(𝑣 𝑜 𝑢)𝑢, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣 𝜖 𝑈. 

Since h is zero-power valued on U, there exists an integer n(x) > 1 such that hn(x)(x)=0, for all x ϵ U. 

Replacing u by u―h(u) + h2(u) + .... + (―1)n(u−1)hn(u)−1(u) in the above equation, we get 

                 𝐹[𝑢, 𝑣]𝑢 + [𝑢, 𝑣]ℎ(𝑢)  =  − (𝑣 𝑜 𝑢)𝑢, 𝑓𝑜𝑟 𝑎𝑙𝑙  𝑢, 𝑣 𝜖  𝑈. 

Using the equation (3.6), the above relation yields that 

                                                             [𝑢, 𝑣]ℎ(𝑢)  =  0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣 𝜖  𝑈.                                                    (3.7) 

Proceeding in the same manner as in the proof of Theorem 3.1., we get the required result. 

Theorem 3.3. Let R be a semi-prime ring with Char R ≠ 2 and U a nonzero Lie ideal of R. Suppose 

that R admits a right generalized homoderivation F associated with a homoderivation h of R such 

that h(U ) ⊆ U. If F ( [u, v]) = [v, u], for all u, v  ϵ U,     then h is commuting map on U.  

   Proof.  we have,  

                                                  𝐹 ( 𝑢, 𝑣 )  =  [𝑣, 𝑢], 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣, 𝜖 𝑈.                                                      (3.8) 

Replacing v by 2vu in equations (3.8) and using the fact that Char R ≠ 2, we obtain that 

   𝐹 ( 𝑢, 𝑣𝑢 )  =  [𝑣𝑢, 𝑢], 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣 𝜖 𝑈. 

     𝐹 ( 𝑢, 𝑣 𝑢)  =  [𝑣, 𝑢]𝑢, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣 𝜖 𝑈. 

i.e.,  

𝐹 [𝑢, 𝑣]ℎ(𝑢)  +  𝐹 [𝑢, 𝑣]𝑢 + [𝑢, 𝑣]ℎ(𝑢)  =  [𝑣, 𝑢]𝑢, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣 𝜖 𝑈. 

𝐹 [𝑢, 𝑣](ℎ(𝑢)  +  𝑢)  + [𝑢, 𝑣]ℎ(𝑢)  =  [𝑣, 𝑢]𝑢, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣 𝜖 𝑈. 

Since h is zero-power valued on U, there exists an integer n(x) > 1 such that hn(x)(x) = 0, for all x ϵ U. 

Replacing u by u―h(u) + h2(u) + .... + (―1)n(u−1)hn(u)−1(u) in the above equation, we get 

               𝐹 [𝑢, 𝑣]𝑢 + [𝑢, 𝑣]ℎ(𝑢)  =  [𝑣, 𝑢]𝑢, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣 𝜖 𝑈. 

              𝐹 [𝑢, 𝑣]𝑢 + [𝑢, 𝑣]ℎ(𝑢)  =  [𝑣, 𝑢]𝑢, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣 𝜖 𝑈. 

Using the given hypothesis, the above relation yields that 

               [𝑢, 𝑣]ℎ(𝑢)  =  0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣 𝜖 𝑈.                                             (3.9)                                                   

Proceeding in the same manner as in the proof of Theorem 3.1., we obtain the required result. 

Theorem 3.4.  Let R be a semi-prime ring with Char R≠ 2 and U a nonzero Lie ideal of R. Suppose that R 

admits a right generalized homoderivation  F associated with a homoderivation h of  R such that h(U ) ⊆ U. 

If   𝐹 ( 𝑢, 𝑣 )  =  −[𝑣, 𝑢],  for all   u, v ϵ U, then h is commuting map on U. 

Proof. we have, 

                                                       𝐹 ( 𝑢, 𝑣 )  =  − [𝑣, 𝑢], 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣 𝜖 𝑈.                                               (3.10) 

Replacing v by 2vu in equations (3.10) and using the fact that Char R ≠ 2, we obtain that 

𝐹 ( 𝑢, 𝑣𝑢 )  =  − [𝑣𝑢, 𝑢], 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣 𝜖  𝑈. 

𝐹 ( 𝑢, 𝑣 𝑢)  =  − [ 𝑣, 𝑢]𝑢, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣 𝜖  𝑈. 



 ISSN: 2320-0294 Impact Factor: 6.765  

20 International Journal of Engineering, Science and Mathematics 

http://www.ijmra.us, Email: editorijmie@gmail.com 

 

 − 

̸  

−

 − 

i.e., 

𝐹 [𝑢, 𝑣]ℎ(𝑢)  +  𝐹 [𝑢, 𝑣]𝑢 + [𝑢, 𝑣]ℎ(𝑢)  =  − [ 𝑣, 𝑢]𝑢, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣 𝜖  𝑈. 

𝐹 [𝑢, 𝑣](ℎ(𝑢)  +  𝑢)  + [𝑢, 𝑣]ℎ(𝑢)  =  −[𝑣, 𝑢]𝑢, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣 𝜖  𝑈. 

 Since h is zero-power valued on U, there exists an integer n(x) > 1 such that hn(x)(x) = 0,  for all x ϵ 

U. Replacing u by u―h(u) + h2(u) + .... + (―1)n(u−1)hn(u)−1(u) in the above equation, we get 

𝐹 [𝑢, 𝑣]𝑢 +  [𝑢, 𝑣]ℎ(𝑢)  =  −[𝑣, 𝑢]𝑢, 𝑓𝑜𝑟 𝑎𝑙𝑙  𝑢, 𝑣 𝜖  𝑈. 

Using the given hypothesis, the above relation yields that 

                                    [𝑢, 𝑣]ℎ(𝑢)  =  0, 𝑓𝑜𝑟 𝑎𝑙𝑙  𝑢, 𝑣 𝜖 𝑈.                                                             (3.11) 

Proceeding in the same manner as in the proof of Theorem 3.1, we obtain the srequired result. 

Theorem 3.5.  Let  R  be a semi-prime ring with Char R ≠ 2 and U a nonzero Lie ideal of  R. Suppose that 

R admits a right generalized homoderivation F associated with a homoderivation h of R such that h(U ) ⊆ U.  

If  F (u o v) = [v, u], for all u, v ϵ U,  then h is commuting map on U. 

Proof. we have, 

               𝐹 (𝑢 𝑜 𝑣)  =   [𝑣, 𝑢], 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣, 𝜖 𝑈.                                          (3.12)                                                                                                                                                                  

Replacing v by 2vu in equations (3.12) and using the fact that CharR ≠ 2, we obtain that 

                                                                 𝐹 (𝑢 𝑜 𝑣𝑢)  =   [𝑣𝑢, 𝑢],   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣 𝜖 𝑈. 

                                                                 𝐹 ( 𝑢 𝑜 𝑣 𝑢)  =  [𝑣, 𝑢]𝑢,   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣 𝜖 𝑈. 

i.e.,       

𝐹  𝑢 𝑜 𝑣 ℎ 𝑢 +  𝐹  𝑢 𝑜 𝑣 𝑢 +  𝑢 𝑜 𝑣 ℎ 𝑢 =   𝑣, 𝑢 𝑢,   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣 𝜖 𝑈. 

𝐹 (𝑢 𝑜 𝑣)(ℎ(𝑢) +  𝑢) + (𝑢 𝑜 𝑣)ℎ(𝑢) =  [𝑣, 𝑢]𝑢,    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣 𝜖  𝑈. 

 Since h is zero-power valued on U, there exists an integer n(x) > 1 such that hn(x)(x)=0, for all x ϵ U. 

Replacing u by u―h(u) + h2(u) + .... + (―1)n(u−1)hn(u)−1(u) in the above equation, we get 

𝐹 ( 𝑢 𝑜 𝑣 𝑢)  + (𝑢 𝑜 𝑣)ℎ(𝑢)  =  [𝑣, 𝑢]𝑢, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣 𝜖 𝑈. 

Using the equation (3.12), the above relation yields that 

                                                              (𝑢 𝑜 𝑣)ℎ(𝑢)  =  0,   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣 𝜖 𝑈.                                            (3.13) 

Again, replacing v by 2wv in equation (3.13) and using the fact that Char R ≠ 2, we get 

(𝑢 𝑜 𝑤𝑣)ℎ(𝑢) =  0, which gives that (𝑤(𝑢 𝑜 𝑣) + [𝑢, 𝑤]𝑣)ℎ(𝑢)  =  0, for all 𝑢, 𝑣, 𝑤 𝜖 𝑈, i.e., 

𝑤(𝑢 𝑜 𝑣)ℎ(𝑢)  + [𝑢, 𝑤]𝑣ℎ(𝑢)  =  0, for all 𝑢, 𝑣, 𝑤 𝜖 𝑈. Using the equation (3.13), the above relation yields 

that [u, w]vh(u) = 0, for all u, v, w ϵ   U. 

Proceeding in the same manner as in the proof of Theorem 3.1., we obtain the required result. 

Theorem 3.6.  Let R be a semi-prime ring with Char R ≠ 2 and U a nonzero Lie ideal of  R. Suppose that R 

admits a right generalized homoderivation F associated with a homoderivation h  of  R  such  that h(U ) ⊆ U.  

If F (u o v) = − [v, u], for all u, v ϵ U, then h is commuting map on U. 
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̸  

−

 − 

̸ 

   

   

Proof. we have, 

                                                       𝐹 (𝑢 𝑜 𝑣)  =  − [𝑣, 𝑢], 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣, 𝜖 𝑈.                                                     (3.14) 

Replacing v by 2vu in equations (3.14), we obtain that 

𝐹  𝑢 𝑜 𝑣𝑢 =  −  𝑣𝑢, 𝑢 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣 𝜖 𝑈. 

i.e., 

𝐹 ( 𝑢 𝑜 𝑣 𝑢)  =  − [𝑣, 𝑢]𝑢, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣 𝜖 𝑈. 

Or,                                       

𝐹  𝑢 𝑜 𝑣 ℎ 𝑢 +  𝐹  𝑢 𝑜 𝑣 𝑢 +  𝑢 𝑜 𝑣 ℎ 𝑢 =  −  𝑣, 𝑢 𝑢, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣 𝜖 𝑈. 

𝐹 (𝑢 𝑜 𝑣)(ℎ(𝑢)  +  𝑢)  + (𝑢 𝑜 𝑣)ℎ(𝑢)  =  −([𝑣, 𝑢]𝑢), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣 𝜖 𝑈. 

 Since h is zero-power valued on U, there exists an integer n(x) > 1 such that hn(x)(x)=0, for all x ϵ U. 

Replacing u by u―h(u) + h2(u) + .... + (―1)n(u−1)hn(u)−1(u) in the above equation, we get 

                                             𝐹 ( 𝑢 𝑜 𝑣 𝑢)  + (𝑢 𝑜 𝑣)ℎ(𝑢)  =  − [𝑣, 𝑢]𝑢,   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣 𝜖 𝑈. 

Using the equation (3.14), the above relation yields that 

                                              (𝑢 𝑜 𝑣)ℎ(𝑢)  =  0,   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣 𝜖  𝑈.                                                             (3.15)                            

Again, replacing v by 2wv in equation (3.15) and using the fact that Char R ≠ 2,  we get (u o wv)h(u) 

= 0, which gives that (w(u o v)+[u, w]v)h(u) = 0, for all u, v, w ϵ U, i.e., w(u o v)h(u) + [u, w]vh(u) = 0, for 

all u, v, w ϵ U. Using the equation (3.15), the above relation yields that [u, w]vh(u) = 0, for all u, v, w ϵ  U . 

Now the proof runs as Theorem 3.1. 

Theorem 3.7.  Let R be a semi-prime ring with CharR ≠ 2 and U a nonzero Lie ideal of R. Suppose 

that R  admits  a right  generalized  homoderivation  F associated with a homoderivation h of R  such 

that h(U ) ⊆ U. If F ([u, v]) + h([u, v]) + [u, v] = 0,   for all  u, v ϵ  U , then h is commuting map on U . 

Proof. we have, 

𝐹 ( 𝑢, 𝑣 ) +  ℎ( 𝑢, 𝑣 )  + [𝑢, 𝑣]  =  0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣 𝜖  𝑈.                                                  (3.16) 

Replacing v by 2vu in equations (3.16) and using the fact that CharR ≠ 2, we obtain that 

                    𝐹 ( 𝑢, 𝑣𝑢 ) +  ℎ( 𝑢, 𝑣𝑢 )  + [𝑢, 𝑣𝑢]  =  0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣 𝜖   𝑈. 

 i.e.,                                  𝐹 ( 𝑢, 𝑣 𝑢)  +  ℎ( 𝑢, 𝑣 𝑢)  + [𝑢, 𝑣]𝑢 =  0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣 𝜖   𝑈.  

𝐹   𝑢, 𝑣   ℎ 𝑢 + 𝐹   𝑢, 𝑣  𝑢 +  𝑢, 𝑣 ℎ 𝑢 + ℎ 𝑢, 𝑣 ℎ 𝑢 + ℎ  𝑢, 𝑣  𝑢 +  𝑢, 𝑣 ℎ 𝑢 +

 𝑢, 𝑣 𝑢 =  0, 

𝐹 ([𝑢, 𝑣])(ℎ(𝑢) + 𝑢) + [𝑢, 𝑣]ℎ(𝑢) + ℎ[𝑢, 𝑣](ℎ(𝑢) + 𝑢) + [𝑢, 𝑣]ℎ(𝑢) + [𝑢, 𝑣]𝑢 =  0,     

Since h is zero-power valued on U, there exists an integer n(x) > 1 such that hn(x)(x)=0, for all x ϵ U. 

Replacing u by u―h(u) + h2(u) + .... + (―1)n(u−1)hn(u)−1(u) in the above equation, we get 

𝐹(  𝑢, 𝑣 )𝑢 + [𝑢, 𝑣]ℎ(𝑢)  +  ℎ( 𝑢, 𝑣 )𝑢 + [𝑢, 𝑣]ℎ(𝑢)  + [𝑢, 𝑣]𝑢 =  0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣 𝜖  𝑈. 

𝐹 ( 𝑢, 𝑣 )𝑢 +  ℎ( 𝑢, 𝑣 )𝑢 +  2[𝑢, 𝑣]ℎ(𝑢)  + [𝑢, 𝑣]𝑢 =  0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣 𝜖   𝑈. 



 ISSN: 2320-0294 Impact Factor: 6.765  

22 International Journal of Engineering, Science and Mathematics 

http://www.ijmra.us, Email: editorijmie@gmail.com 

 

̸ 

 − − 

̸ 

Using the given hypothesis, the above relation yields that 2[u, v]h(u) = 0, for all u, v ϵ  U. Since R is 

o f  CharR ≠ 2, we have [𝑢, 𝑣]ℎ(𝑢)  =  0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣 𝜖 𝑈. 

  Now the proof runs as the proof of Theorem 3.1, we get the required result. 

 

Theorem 3.8. Let R be a semi-prime ring with Char R≠2 and U a nonzero Lie ideal of R. Suppose 

that R  admits a right generalized homoderivation  F associated with a homoderivation h of R such 

that h(U )⊆ U. If F ([u, v]) + h([u, v])  +  (u o v) = 0,          for all  u, v ϵ U , then h is commuting map on U . 

Proof. we have 

                      𝐹 ( 𝑢, 𝑣 )  +  ℎ( 𝑢, 𝑣 )  + (𝑢 𝑜 𝑣)  =  0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣, 𝜖 𝑈.                                       (3.17)                                                                                    

Replacing v by 2vu in equations (3.18) and using the fact that CharR ≠ 2, we obtain that 

                     𝐹 ( 𝑢, 𝑣𝑢 )  +  ℎ( 𝑢, 𝑣𝑢 )  + (𝑢 𝑜 𝑣𝑢)  =  0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣 𝜖   𝑈. 

                       𝐹   𝑢, 𝑣  𝑢 +  ℎ  𝑢, 𝑣  𝑢 +  (𝑢 𝑜 𝑣)𝑢 =  0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣 𝜖  𝑈. 

𝐹   𝑢, 𝑣  ℎ 𝑢 + 𝐹   𝑢, 𝑣  𝑢 +  𝑢, 𝑣 ℎ 𝑢 + ℎ  𝑢, 𝑣  ℎ 𝑢 + ℎ  𝑢, 𝑣  𝑢 +  𝑢, 𝑣 ℎ 𝑢 

+  𝑢 𝑜 𝑣 𝑢 =  0, 

𝐹  𝑢, 𝑣  ℎ 𝑢 + 𝑢 +  𝑢, 𝑣 ℎ 𝑢 + ℎ  𝑢, 𝑣   ℎ 𝑢 + 𝑢 +  𝑢, 𝑣 ℎ 𝑢 +  𝑢 𝑜 𝑣 𝑢

=  0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣 𝜖   𝑈. 

 Since h is zero-power valued on U, there exists an integer n(x) > 1 such that hn(x)(x)=0, for all x ϵ U. 

Replacing u by u―h(u) + h2(u) + .... + (―1)n(u−1)hn(u)−1(u) in the above equation, we get 

𝐹 ( 𝑢, 𝑣 𝑢)  + [𝑢, 𝑣]ℎ(𝑢)  +  ℎ( 𝑢, 𝑣 𝑢)  + [𝑢, 𝑣]ℎ(𝑢)  + (𝑢 𝑜 𝑣)𝑢 =  0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣 𝜖 𝑈. 

                𝐹 ( 𝑢, 𝑣 𝑢)  +  ℎ( 𝑢, 𝑣 𝑢)  +  2[𝑢, 𝑣]ℎ(𝑢)  + (𝑢 𝑜 𝑣)𝑢 =  0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣 𝜖 𝑈. 

Using the given hypothesis, the above relation yields that 2[u, v]h(u) = 0, for all u, v ϵ   U. Since R is 

semi prime ring with CharR ≠ 2,  

 𝑢, 𝑣 ℎ 𝑢 =  0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣 𝜖 𝑈.                                                               (3.18)                                                         

Proceeding in the same manner as in the proof of Theorem 3.1, we obtain the required result. 

Theorem 3.9.  Let R be a free semi-prime ring with CharR  ≠ 2 and U a nonzero Lie ideal of R. 

Suppose that R admits a right generalized homoderivation F associated with a homoderivation h of R 

such that h(U ) ⊆  U.  If  F (u o v) + h(u o v) +(u o v) = 0, for all u, v ϵ    U, then h is commuting map on U . 

Proof. we have,  

              𝐹 (𝑢 𝑜 𝑣)  +  ℎ(𝑢 𝑜 𝑣)  +  (𝑢 𝑜 𝑣)  =  0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣 𝜖 𝑈.                                              (3.19)                                                                   

Replacing v by 2vu in equations (3.20) and using the fact that CharR ≠ 2, we obtain that 

      𝐹 (𝑢 𝑜 𝑣𝑢)  +  ℎ(𝑢 𝑜 𝑣𝑢)  + (𝑢 𝑜 𝑣𝑢)  =  0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣 𝜖 𝑈. 

   𝐹   𝑢 𝑜 𝑣 𝑢 −  𝑣 𝑢, 𝑢  +  ℎ  𝑢 𝑜 𝑣 𝑢 −  𝑣 𝑢, 𝑢  +   𝑢 𝑜 𝑣 𝑢 −  𝑣 𝑢, 𝑢  =  0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣 𝜖 𝑈. 
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 − − 

 i.e.                                  

𝐹   𝑢 𝑜 𝑣 𝑢 +  ℎ  𝑢 𝑜 𝑣 𝑢 +  𝑢 𝑜 𝑣 𝑢 =  0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣 𝜖 𝑈. 

𝐹 (𝑢𝑜𝑣)ℎ(𝑢) + 𝐹(𝑢𝑜𝑣)𝑢 + (𝑢𝑜𝑣)ℎ(𝑢) + ℎ(𝑢𝑜𝑣)ℎ(𝑢) + ℎ(𝑢𝑜𝑣)𝑢 + (𝑢𝑜𝑣)ℎ(𝑢) + (𝑢𝑜𝑣)𝑢 = 0,  

𝐹 (𝑢𝑜𝑣)(ℎ(𝑢) + 𝑢) + (𝑢𝑜𝑣)ℎ(𝑢) + ℎ(𝑢𝑜𝑣)(ℎ(𝑢) + 𝑢) + (𝑢𝑜𝑣)ℎ(𝑢) + (𝑢𝑜𝑣)𝑢 =  0,  

Since h is zero-power valued on U, there exists an integer n(x) > 1 such that hn(x)(x)=0, for all x ϵ U. 

Replacing u by u―h(u) + h2(u) + .... + (―1)n(u−1)hn(u)−1(u) in the above equation, we get 

𝐹 (𝑢 𝑜 𝑣)𝑢 + (𝑢 𝑜 𝑣)ℎ(𝑢)  +  ℎ(𝑢 𝑜 𝑣)𝑢 + (𝑢 𝑜 𝑣)ℎ(𝑢)  + (𝑢 𝑜 𝑣)𝑢 =  0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣 𝜖 𝑈. 

Using the given hypothesis, the above relation yields that 2[u o v]h(u) = 0, for all u, v ϵ             U. Since R is a 

semi prime ring with CharR ≠ 2, 

 𝑢 𝑜 𝑣 ℎ 𝑢 =  0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣 𝜖 𝑈.                                                                                                                                                                                                                                                                                                                                   (3.20) 

Again, replacing v by 2wv in equation (3.20) and using the fact that CharR ≠ 2, we get (uov)h(u) = 

0, for all u, v ϵ  U which gives that (w(u o v)+[u, w]v)h(u) = 0, for all u, v, w ϵ U , i.e., w(u o v)h(u) + [u, 

w]vh(u) = 0, for all u, v, w ϵ U . Using equation (3.20), the above relation yields that [u, w]vh(u) = 0, for 

all u, v, w ϵ  U . Now follow the proof of Theorem 3.1, we get the required result. 
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