
International Journal of Engineering, Science and Mathematics
Vol. 10 Issue 03, March 2021,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: editorijmie@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed &

Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A

123 International Journal of Engineering, Science and Mathematics

http://www.ijesm.co.in, Email: editorijmie@gmail.com

Cache Coherence and Synchronization-ISSUES

AUTHOR-DR.R.HEMAMALANI

CO-AUTHOR-M.KAMARUNISHA

R.JOTHI

INTRODUCTION

Cache coherence refers to the consistency and synchronization of data stored in different

caches within a multiprocessor or multicore system. In such systems, each processor or

core typically has its own cache memory to improve performance.

Definition

Coherence defines the behavior of reads and writes to a single address location.

One type of data occurring simultaneously in different cache memory is called cache

coherence, or in some systems, global memory.

In a multiprocessor system, consider that more than one processor has cached a copy of the

memory location X. The following conditions are necessary to achieve cache coherence:

1. In a read made by a processor P to a location X that follows a write by the same

processor P to X, with no writes to X by another processor occurring between the

write and the read instructions made by P, X must always return the value written

by P.

2. In a read made by a processor P1 to location X that follows a write by another

processor P2 to X, with no other writes to X made by any processor occurring

between the two accesses and with the read and write being sufficiently separated,

X must always return the value written by P2. This condition defines the concept

of coherent view of memory. Propagating the writes to the shared memory location

ensures that all the caches have a coherent view of the memory. If processor P1

reads the old value of X, even after the write by P2, we can say that the memory is

incoherent.

The above conditions satisfy the Write Propagation criteria required for cache coherence.

However, they are not sufficient as they do not satisfy the Transaction Serialization

condition. To illustrate this better, consider the following example:

A multi-processor system consists of four processors - P1, P2, P3 and P4, all containing

cached copies of a shared variable S whose initial value is 0. Processor P1 changes the

value of S (in its cached copy) to 10 following which processor P2 changes the value

of S in its own cached copy to 20. If we ensure only write propagation, then P3 and P4 will

certainly see the changes made to S by P1 and P2. However, P3 may see the change made

 ISSN: 2320-0294Impact Factor: 6.765

124 International Journal of Engineering, Science and Mathematics

http://www.ijmra.us, Email: editorijmie@gmail.com

by P1 after seeing the change made by P2 and hence return 10 on a read to S. P4 on the

other hand may see changes made by P1 and P2 in the order in which they are made and

hence return 20 on a read to S. The processors P3 and P4 now have an incoherent view of

the memory.

Therefore, in order to satisfy Transaction Serialization, and hence achieve Cache

Coherence, the following condition along with the previous two mentioned in this section

must be met:

 Writes to the same location must be sequenced. In other words, if location X received

two different values A and B, in this order, from any two processors, the processors

can never read location X as B and then read it as A. The location X must be seen with

values A and B in that order.
[5]

The alternative definition of a coherent system is via the definition of sequential

consistency memory model: "the cache coherent system must appear to execute all threads’

loads and stores to a single memory location in a total order that respects the program order

of each thread".
[3]

 Thus, the only difference between the cache coherent system and

sequentially consistent system is in the number of address locations the definition talks

about (single memory location for a cache coherent system, and all memory locations for a

sequentially consistent system).

Another definition is: "a multiprocessor is cache consistent if all writes to the same

memory location are performed in some sequential order".
[6]

Rarely, but especially in algorithms, coherence can instead refer to the locality of

reference. Multiple copies of same data can exist in different cache simultaneously and if

processors are allowed to update their own copies freely, an inconsistent view of memory

can result.

The Cache Coherence Problem

In a multiprocessor system, data inconsistency may occur among adjacent levels or within

the same level of the memory hierarchy. For example, the cache and the main memory

may have inconsistent copies of the same object.

As multiple processors operate in parallel, and independently multiple caches may possess

different copies of the same memory block, this creates cache coherence problem. Cache

coherence schemes help to avoid this problem by maintaining a uniform state for each

cached block of data.

Let X be an element of shared data which has been referenced by two processors, P1 and

P2. In the beginning, three copies of X are consistent. If the processor P1 writes a new data

X1 into the cache, by using write-through policy, the same copy will be written

immediately into the shared memory. In this case, inconsistency occurs between cache

memory and the main memory. When a write-back policy is used, the main memory will

be updated when the modified data in the cache is replaced or invalidated.

https://en.wikipedia.org/wiki/Cache_coherence#cite_note-5
https://en.wikipedia.org/wiki/Sequential_consistency
https://en.wikipedia.org/wiki/Sequential_consistency
https://en.wikipedia.org/wiki/Sequential_consistency
https://en.wikipedia.org/wiki/Cache_coherence#cite_note-:2-3
https://en.wikipedia.org/wiki/Cache_coherence#cite_note-6
https://en.wikipedia.org/wiki/Locality_of_reference
https://en.wikipedia.org/wiki/Locality_of_reference
https://en.wikipedia.org/wiki/Locality_of_reference

 ISSN: 2320-0294Impact Factor: 6.765

125 International Journal of Engineering, Science and Mathematics

http://www.ijmra.us, Email: editorijmie@gmail.com

In general, there are three sources of inconsistency problem −

 Sharing of writable data

 Process migration

 I/O activity

Snoopy Bus Protocols

Snoopy protocols achieve data consistency between the cache memory and the shared

memory through a bus-based memory system. Write-invalidate and write-update policies

are used for maintaining cache consistency.

In this case, we have three processors P1, P2, and P3 having a consistent copy of data

element ‘X’ in their local cache memory and in the shared memory (Figure-a). Processor

P1 writes X1 in its cache memory using write-invalidate protocol. So, all other copies are

invalidated via the bus. It is denoted by ‘I’ (Figure-b). Invalidated blocks are also known

as dirty, i.e. they should not be used. The write-update protocol updates all the cache

copies via the bus. By using write back cache, the memory copy is also updated (Figure-

c).

Cache Events and Actions

Following events and actions occur on the execution of memory-access and invalidation

commands −

 Read-miss − When a processor wants to read a block and it is not in the cache, a

read-miss occurs. This initiates a bus-read operation. If no dirty copy exists, then

the main memory that has a consistent copy, supplies a copy to the requesting

cache memory. If a dirty copy exists in a remote cache memory, that cache will

restrain the main memory and send a copy to the requesting cache memory. In both

the cases, the cache copy will enter the valid state after a read miss.

 Write-hit − If the copy is in dirty or reserved state, write is done locally and the

new state is dirty. If the new state is valid, write-invalidate command is broadcasted

to all the caches, invalidating their copies. When the shared memory is written

through, the resulting state is reserved after this first write.

 Write-miss − If a processor fails to write in the local cache memory, the copy must

come either from the main memory or from a remote cache memory with a dirty

block. This is done by sending a read-invalidate command, which will invalidate

all cache copies. Then the local copy is updated with dirty state.

 Read-hit − Read-hit is always performed in local cache memory without causing a

transition of state or using the snoopy bus for invalidation.

 Block replacement − When a copy is dirty, it is to be written back to the main

memory by block replacement method. However, when the copy is either in valid

or reserved or invalid state, no replacement will take place.

 ISSN: 2320-0294Impact Factor: 6.765

126 International Journal of Engineering, Science and Mathematics

http://www.ijmra.us, Email: editorijmie@gmail.com

Directory-Based Protocols

By using a multistage network for building a large multiprocessor with hundreds of

processors, the snoopy cache protocols need to be modified to suit the network capabilities.

Broadcasting being very expensive to perform in a multistage network, the consistency

commands is sent only to those caches that keep a copy of the block. This is the reason for

development of directory-based protocols for network-connected multiprocessors.

In a directory-based protocols system, data to be shared are placed in a common directory

that maintains the coherence among the caches. Here, the directory acts as a filter where

the processors ask permission to load an entry from the primary memory to its cache

memory. If an entry is changed the directory either updates it or invalidates the other

caches with that entry.

Hardware Synchronization Mechanisms

Synchronization is a special form of communication where instead of data control,

information is exchanged between communicating processes residing in the same or

different processors.

Multiprocessor systems use hardware mechanisms to implement low-level synchronization

operations. Most multiprocessors have hardware mechanisms to impose atomic operations

such as memory read, write or read-modify-write operations to implement some

synchronization primitives. Other than atomic memory operations, some inter-processor

interrupts are also used for synchronization purposes.

Cache Coherency in Shared Memory Machines

Maintaining cache coherency is a problem in multiprocessor system when the processors

contain local cache memory. Data inconsistency between different caches easily occurs in

this system.

The major concern areas are −

 Sharing of writable data

 Process migration

 I/O activity

Sharing of writable data

When two processors (P1 and P2) have same data element (X) in their local caches and one

process (P1) writes to the data element (X), as the caches are write-through local cache of

P1, the main memory is also updated. Now when P2 tries to read data element (X), it does

not find X because the data element in the cache of P2 has become outdated.

 ISSN: 2320-0294Impact Factor: 6.765

127 International Journal of Engineering, Science and Mathematics

http://www.ijmra.us, Email: editorijmie@gmail.com

Process migration

In the first stage, cache of P1 has data element X, whereas P2 does not have anything. A

process on P2 first writes on X and then migrates to P1. Now, the process starts reading

data element X, but as the processor P1 has outdated data the process cannot read it. So, a

process on P1 writes to the data element X and then migrates to P2. After migration, a

process on P2 starts reading the data element X but it finds an outdated version of X in the

main memory.

I/O activity

As illustrated in the figure, an I/O device is added to the bus in a two-processor

multiprocessor architecture. In the beginning, both the caches contain the data element X.

When the I/O device receives a new element X, it stores the new element directly in the

main memory. Now, when either P1 or P2 (assume P1) tries to read element X it gets an

outdated copy. So, P1 writes to element X. Now, if I/O device tries to transmit X it gets an

outdated copy.

Uniform Memory Access (UMA)

Uniform Memory Access (UMA) architecture means the shared memory is the same for all

processors in the system. Popular classes of UMA machines, which are commonly used for

(file-) servers, are the so-called Symmetric Multiprocessors (SMPs). In an SMP, all system

resources like memory, disks, other I/O devices, etc. are accessible by the processors in a

uniform manner.

Non-Uniform Memory Access (NUMA)

In NUMA architecture, there are multiple SMP clusters having an internal indirect/shared

network, which are connected in scalable message-passing network. So, NUMA

architecture is logically shared physically distributed memory architecture.

In a NUMA machine, the cache-controller of a processor determines whether a memory

reference is local to the SMP’s memory or it is remote. To reduce the number of remote

memory accesses, NUMA architectures usually apply caching processors that can cache

the remote data. But when caches are involved, cache coherency needs to be maintained.

So these systems are also known as CC-NUMA (Cache Coherent NUMA).

Cache Only Memory Architecture (COMA)

 ISSN: 2320-0294Impact Factor: 6.765

128 International Journal of Engineering, Science and Mathematics

http://www.ijmra.us, Email: editorijmie@gmail.com

COMA machines are similar to NUMA machines, with the only difference that the main

memories of COMA machines act as direct-mapped or set-associative caches. The data

blocks are hashed to a location in the DRAM cache according to their addresses. Data that

is fetched remotely is actually stored in the local main memory. Moreover, data blocks do

not have a fixed home location, they can freely move throughout the system.

COMA architectures mostly have a hierarchical message-passing network. A switch in

such a tree contains a directory with data elements as its sub-tree. Since data has no home

location, it must be explicitly searched for. This means that a remote access requires a

traversal along the switches in the tree to search their directories for the required data. So,

if a switch in the network receives multiple requests from its subtree for the same data, it

combines them into a single request which is sent to the parent of the switch. When the

requested data returns, the switch sends multiple copies of it down its subtree.

COMA versus CC-NUMA

Following are the differences between COMA and CC-NUMA.

 COMA tends to be more flexible than CC-NUMA because COMA transparently

supports the migration and replication of data without the need of the OS.

 COMA machines are expensive and complex to build because they need non-

standard memory management hardware and the coherency protocol is harder to

implement.

 Remote accesses in COMA are often slower than those in CC-NUMA since the tree

network needs to be traversed to find the data.

REFERENCES-

1. E. Thomadakis, Michael (2011). The Architecture of the Nehalem Processor and

Nehalem-EP SMP Platforms (PDF). Texas A&M University. p. 30. Archived

from the original (PDF) on 2014-08-11.

2. ^ Jump up to:
a

b
 Yan, Solihin. Fundamentals of parallel multicore

architecture. OCLC 884540034.

3. ^ Jump up to:
a

b
 Sorin, Daniel J.; Hill, Mark D.; Wood, David Allen (2011-01-

01). A primer on memory consistency and cache coherence. Morgan & Claypool

Publishers. OCLC 726930429.

4. ^ Jump up to:
a

b

c
 Patterson and Hennessy. Computer Organization and Design -

4th Edition. ISBN 978-0-12-374493-7.

5. ^ Neupane, Mahesh (April 16, 2004). "Cache Coherence" (PDF). Archived

from the original (PDF) on 20 June 2010.

6. ^ Steinke, Robert C.; Nutt, Gary J. (2004-09-01). "A Unified Theory of Shared

Memory Consistency". J. ACM. 51 (5): 800–

https://web.archive.org/web/20140811023120/http:/sc.tamu.edu/systems/eos/nehalem.pdf
https://web.archive.org/web/20140811023120/http:/sc.tamu.edu/systems/eos/nehalem.pdf
http://sc.tamu.edu/systems/eos/nehalem.pdf
https://en.wikipedia.org/wiki/Cache_coherence#cite_ref-:0_2-0
https://en.wikipedia.org/wiki/Cache_coherence#cite_ref-:0_2-1
https://en.wikipedia.org/wiki/OCLC_(identifier)
https://www.worldcat.org/oclc/884540034
https://en.wikipedia.org/wiki/Cache_coherence#cite_ref-:2_3-0
https://en.wikipedia.org/wiki/Cache_coherence#cite_ref-:2_3-1
https://en.wikipedia.org/wiki/OCLC_(identifier)
https://www.worldcat.org/oclc/726930429
https://en.wikipedia.org/wiki/Cache_coherence#cite_ref-:3_4-0
https://en.wikipedia.org/wiki/Cache_coherence#cite_ref-:3_4-1
https://en.wikipedia.org/wiki/Cache_coherence#cite_ref-:3_4-2
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-12-374493-7
https://en.wikipedia.org/wiki/Cache_coherence#cite_ref-5
https://web.archive.org/web/20100620091706/http:/cse.csusb.edu/schubert/tutorials/csci610/w04/MN_Cache_Coherence.pdf
http://cse.csusb.edu/schubert/tutorials/csci610/w04/MN_Cache_Coherence.pdf
https://en.wikipedia.org/wiki/Cache_coherence#cite_ref-6

 ISSN: 2320-0294Impact Factor: 6.765

129 International Journal of Engineering, Science and Mathematics

http://www.ijmra.us, Email: editorijmie@gmail.com

849. arXiv:cs/0208027. doi:10.1145/1017460.1017464. ISSN 0004-

5411. S2CID 3206071.

7. ^ "Ravishankar, Chinya; Goodman, James (February 28, 1983). "Cache

Implementation for Multiple Microprocessors"" (PDF). Proceedings of IEEE

COMPCON: 346–350.

8. ^ RasmusUlfsnes (June 2013). "Design of a Snoop Filter for Snoop-Based Cache

Coherency Protocols" Archived 2014-02-01 at the Wayback Machine (PDF). diva-

portal.org. Norwegian University of Science and Technology. Retrieved 2014-01-

20.

9. ^ "Lecture 18: Snooping vs. Directory Based Coherency" (PDF). Berkeley.edu.

Retrieved 14 May 2023.

10. ̂ Kriouile (16 September 2013). Formal Analysis of the ACE Specification for

Cache Coherent Systems-on-Chip. In Formal Methods for Industrial Critical

Systems. Springer Berlin Heidelberg. ISBN 978-3-642-41010-9.

11. ̂ Ltd, Arm. "AMBA | AMBA 5". Arm Developer. Retrieved 2021-04-27.

https://en.wikipedia.org/wiki/ArXiv_(identifier)
https://arxiv.org/abs/cs/0208027
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1145%2F1017460.1017464
https://en.wikipedia.org/wiki/ISSN_(identifier)
https://www.worldcat.org/issn/0004-5411
https://www.worldcat.org/issn/0004-5411
https://en.wikipedia.org/wiki/S2CID_(identifier)
https://api.semanticscholar.org/CorpusID:3206071
https://en.wikipedia.org/wiki/Cache_coherence#cite_ref-7
http://www.cs.ucr.edu/~ravi/Papers/NWConf/ravishankar_83.pdf
http://www.cs.ucr.edu/~ravi/Papers/NWConf/ravishankar_83.pdf
http://www.cs.ucr.edu/~ravi/Papers/NWConf/ravishankar_83.pdf
https://en.wikipedia.org/wiki/Cache_coherence#cite_ref-8
http://www.diva-portal.org/smash/get/diva2:649627/FULLTEXT01.pdf
http://www.diva-portal.org/smash/get/diva2:649627/FULLTEXT01.pdf
https://web.archive.org/web/20140201160231/http:/www.diva-portal.org/smash/get/diva2:649627/FULLTEXT01.pdf
https://en.wikipedia.org/wiki/Wayback_Machine
https://en.wikipedia.org/wiki/Cache_coherence#cite_ref-9
https://people.eecs.berkeley.edu/~pattrsn/252F96/Lecture18.pdf
https://en.wikipedia.org/wiki/Cache_coherence#cite_ref-10
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-3-642-41010-9
https://en.wikipedia.org/wiki/Cache_coherence#cite_ref-11
https://developer.arm.com/architectures/system-architectures/amba/amba-5

