SOME CENTRALIZING THEOREMS ON GENERALIZED($\alpha, 1$)- REVERSE DERIVATIONS IN SEMI PRIME RINGS

Sk. Haseena ${ }^{1}$, C.Jaya Subba Reddy ${ }^{2}$ and C.Venkata Sai Raghavendra Reddy ${ }^{3}$

skhaseena547@gmail.com¹² cjsreddysvu@gmail.com²,3
${ }^{1}$ Research Scholar, Department of Mathematics, S.V.University, Tirupati- 517502, Andhra Pradesh, India.
${ }^{2}$ Department of Mathematics, S.V.University, Tirupati- 517502, Andhra Pradesh, India.
${ }^{3}$ Amrita Vishwa Vidyapeetham, Bengaluru campus, Bangalur, Karnataka, 560035, India.

Abstract

Let R be a semiprime ring, $\mathrm{F}: \mathrm{R} \rightarrow \mathrm{R}$ be a generalized $(\alpha, 1)$ - reverse derivation associated with $(\alpha, 1)$ - reverse derivation d and $H: R \rightarrow R$ be a right α-centralizer. If (i) $\mathrm{F}(\mathrm{uv}) \pm \mathrm{H}(\mathrm{uv})=0$; (ii) $\mathrm{F}(\mathrm{uv}) \pm \mathrm{H}(\mathrm{vu})=0$; (iii) $\mathrm{F}(\mathrm{u}) \mathrm{F}(\mathrm{v}) \pm \mathrm{H}(\mathrm{uv})=0$; (iv) F (uv) $\pm \mathrm{H}$ (uv) $\in \mathrm{C}_{\alpha, 1}$; (v) F (uv) $\pm \mathrm{H}$ (vu) $\in \mathrm{C}_{\alpha, 1}$; (vi) $\mathrm{F}(\mathrm{u}) \mathrm{F}(\mathrm{v}) \pm \mathrm{H}(\mathrm{uv}) \in \mathrm{C}_{\alpha, 1}$, for

 all $u, v \in R$.KEY WORDS: Semiprime Ring; Right α-centralizer; $(\alpha, 1)$ - Reverse Derivation; Generalized ($\alpha, 1$) - Reverse Derivation.

AMS Subject Classification: 16N60; 16S20; 16W25; 16U80.

1. INTRODUCTION

The concept of reverse derivation was first time introduced by Herstien [3]. Aboubakr et.al. [1] generalized the concept of reverse derivations to generalized reverse derivations and provided a study of relationship between generalized reverse derivations and generalized derivations. Inspired by this, Tiwari et.al. [11] gave the notion of multiplicative (generalized) reverse derivations. Yenigul and Argac [12] studied prime and semiprime rings with α - derivations. Ibraheem [4] and Asma Ali et.al. [2] studied generalized reverse derivation on semiprime or prime rings. Jaya Subba Reddy et.al. Proved some results on reverse derivations, generalized (σ, τ) derivations in semiprime rings, properties of left
($\alpha, 1$) - derivations in prime rings and also proved some results on $(\alpha, 1)$ - reverse derivations on prime near-rings (See in [5-8]). Several authors have proved annihilator conditions of multiplicative (generalized) reverse derivations, some results of generalized reverse derivations for semiprime rings or prime rings ([10], [9]). In this paper, we proved some results on generalized $(\alpha, 1)$ - reverse derivations in semiprime rings.

2. PRELIMINARIES

Through out this paper R denote an associative ring with center Z . Recall that a ring R is semiprime if $a R a=\{0\}$ implies $a=0$. For any $u, v \in R$, the symbol $[u, v]$ stands for the commutator $u v-v u$. The $(\alpha, 1)$ center of R denoted by $C_{\alpha, 1}$ and defined by $C_{\alpha, 1}=\{c \in R: c \alpha(r)=r c$, for all $r \in R\}$. An additive mapping $d: R \rightarrow R$ is called a reverse derivation if $d(u v)=d(v) u+u d(v)$, for all $u, v \in R$. An additive mapping $d: R \rightarrow R$ is called a $(\alpha, 1)$ - reverse derivation if $d(u v)=d(v) \alpha(u)+v d(u)$, for all $u, v \in R$. An additive mapping $\mathrm{F}: \mathrm{R} \rightarrow \mathrm{R}$ is called a generalized reverse derivation, if there exists a reverse derivation $d: R \rightarrow R$ such that $F(u v)=F(v) u+v d(u)$, for all $u, v \in R$. An additive mapping $F: R \rightarrow R$ is said to be a generalized ($\alpha, 1$) - reverse derivation of R, if there exists $a(\alpha, 1)$ - reverse derivation $d: R \rightarrow R$ such that $F(u v)=F(v) \alpha(u)+v d(u)$, for all $u, v \in R$. An additive mapping $H: R \rightarrow R$ is called a right α-centralizer if $H(u v)=\alpha(u) H(v)$, for all $u, v \in R$, where α is an automorphism of R. Throughout this paper, we shall make use of the basic commentator identities:

$$
\begin{aligned}
{[\mathrm{u}, \mathrm{vw}] } & =\mathrm{v}[\mathrm{u}, \mathrm{w}]+[\mathrm{u}, \mathrm{v}] \mathrm{w} \\
{[\mathrm{uv}, \mathrm{w}] } & =[\mathrm{u}, \mathrm{w}] \mathrm{v}+\mathrm{u}[\mathrm{v}, \mathrm{w}] \\
{[\mathrm{uv}, \mathrm{w}]_{\alpha, 1} } & =\mathrm{u}[\mathrm{v}, \mathrm{w}]_{\alpha, 1}+[\mathrm{u}, \mathrm{w}] \mathrm{v} .
\end{aligned}
$$

Lemma 2.1: Let R be a semiprime ring. If $F: R \rightarrow R$ is a generalized ($\alpha, 1$)-reverse derivation associated with $(\alpha, 1)$ - reverse derivation on d, then $d(u v)=d(v) \alpha(u)+v d(u)$, for all $u, v \in R$.

Proof: We have $F(v u)=F(u) \alpha(v)+u d(v)$, for all $u, v \in R$.
Replacing v by $w v$ in the above equation, we get
$F((w v) u)=F(u) \alpha(w v)+u d(w v)$, for all $u, v, w \in R$.
On the other hand, we have
$F(w(v u))=F(u) \alpha(v w)+u d(v) \alpha(w)+\operatorname{vud}(w)$, for all $u, v, w \in R$.

Equating equations (2.1) and equation (2.2), we get
$\mathrm{F}(\mathrm{u}) \alpha(\mathrm{wv})+\mathrm{ud}(\mathrm{wv})=\mathrm{F}(\mathrm{u}) \alpha(\mathrm{vw})+\mathrm{ud}(\mathrm{v}) \alpha(\mathrm{w})+\operatorname{vud}(\mathrm{w})$, for all $\mathrm{u}, \mathrm{v}, \mathrm{w} \in \mathrm{R}$.
$u(d(w v)-d(v) \alpha(w)-v d(w))=0$, for all $u, v, w \in R$.
Left multiplying equation (2.3) by $d(w v)-d(v) \alpha(w)-v d(w)$, we get
$(d(w v)-d(v) \alpha(w)-v d(w)) u(d(w v)-d(v) \alpha(w)-v d(w))=0$, for all $u, v, w \in R$.
$(d(w v)-d(v) \alpha(w)-v d(w)) R(d(w v)-d(v) \alpha(w)-v d(w))=0$, for all $u, v, w \in R$.
Since R is semiprime ring, we get $d(w v)=d(v) \alpha(w)+v d(w)$, for all $v, w \in R$.
For this $d(u v)=d(v) \alpha(u)+v d(u)$, for all $u, v \in R$.
That is, d is a $(\alpha, 1)$ - reverse derivation.
Lemma 2.2: Let R be a semiprime ring and $F: R \rightarrow R$ is a generalized ($\alpha, 1$)- reverse derivation associated with $(\alpha, 1)$ - reverse derivation d. If $F(u v)=0$, for allu, $v \in R$, then $\mathrm{F}=0$ and $\mathrm{d}=0$.

Proof: We have $F(u v)=0$, for all $u, v \in R$.
Replacing u by wu in equation (2.4), we get $F(u v) \alpha(w)+u v d(w)=0$.
Using (2.4) in the above equation, we get $u v d(w)=0$, for all $u, v, w \in R$.
Left multiplying equation (2.5) by $\operatorname{vd}(w)$, we get $\operatorname{vd}(w) u v d(w)=0$, for all $u, v, w \in R$. $\operatorname{vd}(w) \operatorname{Rvd}(w)=0$, for all $u, v, w \in R$.

Since R is semiprime ring, we get $\operatorname{vd}(w)=0$, for all $v, w \in R$.
Left multiplying equation (2.6) by $d(w)$, we get $d(w) v d(w)=0$, for all $v, w \in R$.
By the semiprimeness of R, we get $d(w)=0$, for all $w \in R$.
By the hypothesis $F(u v)=0$, for all $u, v \in R . F(v) \alpha(u)+v d(u)=0$, for all $u, v \in R$.
Using equation (2.7) in the above equation, we get $F(v) \alpha(u)=0$, for all $u, v \in R$.
Right multiplying equation (2.8) by $\mathrm{F}(\mathrm{v})$, we get $\mathrm{F}(\mathrm{v}) \alpha(\mathrm{u}) \mathrm{F}(\mathrm{v})=0$, for all $\mathrm{u}, \mathrm{v} \in \mathrm{R}$.
Since α is an automorphism of R, we get $F(v) R F(v)=0$, for all $v \in R$.
SinceR is semiprime ring, we get $F(v)=0$, for allv $\in R$.
Hence $F=0$ and $d=0 w h e n ~ F(u v)=0$, for all $u, v \in R$.

Lemma 2.3: Let R be a semiprime ring and $F: R \rightarrow R$ is a generalized ($\alpha, 1$)- reverse derivation associated with $(\alpha, 1)$ - reverse derivation d. If $F(u v) \in C_{\alpha, 1}$, for all $u, v \in R$, then $[\mathrm{d}(\mathrm{u}), \mathrm{u}]_{\alpha, 1}=0$, for all $u \in R$.

Proof: We have $F(u v) \in C_{\alpha, 1}$, for all $u, v \in R$.
Replacingu bywu in equation (2.9), we get $\mathrm{F}(\mathrm{uv}) \alpha(\mathrm{w})+\mathrm{uvd}(\mathrm{w}) \in \mathrm{C}_{\alpha, 1}$, for all $\mathrm{u}, \mathrm{v}, \mathrm{w} \in \mathrm{R}$. Using equation (2.9) in the above equation, we get $u v d(w) \in C_{\alpha, 1}$, for all $u, v, w \in R$. $[\operatorname{uvd}(\mathrm{w}), \mathrm{w}]_{\alpha, 1}=0$, for all $u, v, w \in R$.
$\operatorname{uv}[d(w), w]_{\alpha, 1}+[u v, w] d(w)=0$, for all $u, v, w \in R$.
$\mathrm{uv}[\mathrm{d}(\mathrm{w}), \mathrm{w}]_{\alpha, 1}+\mathrm{u}[\mathrm{v}, \mathrm{w}] \mathrm{d}(\mathrm{w})+[\mathrm{u}, \mathrm{w}] \mathrm{vd}(\mathrm{w})=0$, for all $\mathrm{u}, \mathrm{v}, \mathrm{w} \in \mathrm{R}$.
Replacing v by w in the above equation, we get
$u w[d(w), w]_{\alpha, 1}+u[w, w] d(w)+[u, w] w d(w)=0$, for all $u, w \in R$.
Again replacing w by u in the above equation, we get
$u u[d(u), u]_{\alpha, 1}=0$, for all $u \in R$.
Left multiplying equation (2.10) by $u[d(u), u]_{\alpha, 1}$, we get $u[d(u), u]_{\alpha, 1} u u[d(u), u]_{\alpha, 1}=0$.
$u[d(u), u]_{\alpha, 1} \operatorname{Ru}[d(u), u]_{\alpha, 1}=0$, for all $u \in R$.
Since R is semiprime ring, we get $u[d(u), u]_{\alpha, 1}=0$, for all $u \in R$.
Left multiplying equation (2.11) by $[\mathrm{d}(\mathrm{u}), \mathrm{u}]_{\alpha, 1}=0$, we get
$[d(u), u]_{\alpha, 1} u[d(u), u]_{\alpha, 1}=0$, for all $u \in R$.
By the semiprimeness of R, we conclude that $[d(u), u]_{\alpha, 1}=0$, for all $u \in R$.
Lemma 2.4: Let R be a semiprime ring, $F: R \rightarrow R$ is a generalized ($\alpha, 1$)- reverse derivation associated with $(\alpha, 1)$ - reverse derivation d and $H: R \rightarrow R$ be a right α-centralizer. If the map $G: R \rightarrow R$ is defined as $G(u)=F(u) \pm H(u)$, for all $u \in R$, then G is a generalized $(\alpha, 1)$-reverse derivation associated with $(\alpha, 1)$ - reverse derivation d .

Proof: We suppose that $\mathrm{G}(\mathrm{u})=\mathrm{F}(\mathrm{u}) \pm \mathrm{H}(\mathrm{u})$, for all $\mathrm{u} \in \mathrm{R}$.
Replacingu byuv inequation (2.12), we get $G(u v)=F(u v) \pm H(u v)$, for allu, $v \in R$.
$\mathrm{G}(\mathrm{uv})=\mathrm{F}(\mathrm{v}) \alpha(\mathrm{u})+\mathrm{vd}(\mathrm{u}) \pm \alpha(\mathrm{u}) \mathrm{H}(\mathrm{v})$, for all $\mathrm{u}, \mathrm{v} \in \mathrm{R}$.
$G(u v)=(F(v) \pm H(v)) \alpha(u)+v d(u)$, for all $u, v \in R$.

Using equation (2.12) in the above equation, we get $G(u v)=G(v) \alpha(u)+v d(u)$, for all $u, v \in R$. Then G is a generalized $(\alpha, 1)$ - reverse derivation associated with $(\alpha, 1)-$ reverse derivation d .

3. MAINRESULTS

Theorem 3.1: Let R be a semiprime ring, $F: R \rightarrow R$ is a generalized ($\alpha, 1$)-reverse derivation associated with $(\alpha, 1)$ - reverse derivation d and $\mathrm{H}: \mathrm{R} \rightarrow \mathrm{R}$ be a right α-centralizer. If $F(u v) \pm H(u v)=0$, for all $u, v \in R$, then $d=0$. Moreover, $\mathrm{F}(\mathrm{uv})=\mathrm{F}(\mathrm{v}) \alpha(\mathrm{u})$, for all $\mathrm{u}, \mathrm{v} \in \mathrm{R}$ and $\mathrm{F}= \pm \mathrm{H}$.

Proof: By the hypothesis, weh ave $\mathrm{F}(\mathrm{uv})-\mathrm{H}(\mathrm{uv})=0$, for all $u, v \in R$.
Using equation (2.12) in the above equation, we get $G(u v)=0$, for all $u, v \in R$.
Using lemma 2.2 and lemma2.4, we get $G=0$. So, we have $F=H$.
By the hypothesis, we have $\mathrm{F}(\mathrm{uv})-\mathrm{H}(\mathrm{uv})=0$, for all $u, v \in R$.
$F(v) \alpha(u)+v d(u)-\alpha(u) H(v)=0$, for all $u, v \in R$.
Using equation (3.1) in the above equation, we get $v d(u)=0$, for all $u, v \in R$.
The equation (3.2) is same as equation (2.6) in lemma 2.2. Thus, by same argument of lemma 2.2, we can conclude the result $d(u)=0$, for all $u \in R$.

By the definition of F, we have $F(u v)=F(v) \alpha(u)+v d(u)$, for all $u, v \in R$.
Using equation (3.3) in the above equation, we get $\mathrm{F}(\mathrm{uv})=\mathrm{F}(\mathrm{v}) \alpha(\mathrm{u})$, for all $\mathrm{u}, \mathrm{v} \in \mathrm{R}$.
Similar proof shows that the same conclusion holds asF(uv) $+\mathrm{H}(\mathrm{uv})=0$, for all $u, v \in R$. In this case, we obtain $\mathrm{F}=-\mathrm{H}$. Hence the proof is completed.

Theorem 3.2: Let R be a semiprime ring, $F: R \rightarrow R$ is a generalized ($\alpha, 1$)-reverse derivation associated with $(\alpha, 1)$ - reverse derivation d and $H: R \rightarrow R$ be a right α-centralizer. If $F(u v) \pm H(v u)=0$, for all $u, v \in R$, then $d=0$. Moreover, $F(u v)=F(v) \alpha(u)$, for all $u, v \in R$ and $[F(u), \alpha(u)]=0$, for all $u \in R$.

Proof: By the hypothesis, we have $\mathrm{F}(\mathrm{uv})-\mathrm{H}(\mathrm{vu})=0$, for all $u, v \in R$.
Replacing u by $w v$ and v by u in equation (3.4), we get

$$
(\mathrm{F}(\mathrm{vu})-\mathrm{H}(\mathrm{uv})) \alpha(\mathrm{w})+\alpha(\mathrm{w}) \mathrm{H}(\mathrm{uv})-\alpha(\mathrm{u}) \alpha(\mathrm{w}) \mathrm{H}(\mathrm{v})+\operatorname{vud}(\mathrm{w})=0, \text { for all } \mathrm{u}, \mathrm{v}, \mathrm{w} \in \mathrm{R} .
$$

Using equation (3.4) in the above equation, we get
$\alpha(w) \alpha(u) H(v)-\alpha(u) \alpha(w) H(v)+\operatorname{vud}(w)=0$, for all $u, v, w \in R$.
$H(v) \alpha[w, u]+\operatorname{vud}(w)=0$, for all $u, v, w \in R$.
Replacing w by u in equation (3.5), we get $\operatorname{vud}(u)=0$, for all $u, v, w \in R$.
The equation (3.6) is same as equation (2.5) in lemma 2.2. Thus, by same argument of lemma 2.2, we can conclude the result $d(u)=0$, for all $u \in R$.

By the definition of F, we have $F(u v)=F(v) \alpha(u)+v d(u)$, for all $u, v \in R$.
Using (3.7) in the above equation, we get $\mathrm{F}(\mathrm{uv})=\mathrm{F}(\mathrm{v}) \alpha(\mathrm{u})$, for all $\mathrm{u}, \mathrm{v} \in \mathrm{R}$.
Using equation (3.7) in equation (3.5), we get $\mathrm{H}(\mathrm{v}) \alpha[\mathrm{w}, \mathrm{u}]=0$, for all $\mathrm{u}, \mathrm{v}, \mathrm{w} \in \mathrm{R}$.
Replacing v by wv in equation (3.9), we get $\mathrm{H}(\mathrm{wv}) \alpha[\mathrm{w}, \mathrm{u}]=0$, for allu, $\mathrm{v}, \mathrm{w} \in \mathrm{R}$.
Using equation (3.4) in the above equation, we get $\mathrm{F}(\mathrm{vw}) \alpha[\mathrm{w}, \mathrm{u}]=0$, for all $\mathrm{u}, \mathrm{v}, \mathrm{w} \in \mathrm{R}$.
Using equation(3.8) in the above equation, we get $\mathrm{F}(\mathrm{w}) \alpha(\mathrm{v}) \alpha[\mathrm{w}, \mathrm{u}]=0$, for all $\mathrm{u}, \mathrm{v}, \mathrm{w} \in \mathrm{R}$. Interchange u and w places in the above equation, we get
$\mathrm{F}(\mathrm{u}) \alpha(\mathrm{v}) \alpha[\mathrm{u}, \mathrm{w}]=0$, for all $\mathrm{u}, \mathrm{v}, \mathrm{w} \in \mathrm{R}$.
Replacing v by vw in equation (3.10), we get
$\mathrm{F}(\mathrm{u}) \alpha(\mathrm{v}) \alpha(\mathrm{w}) \alpha[\mathrm{u}, \mathrm{w}]=0$, for allu, $\mathrm{v}, \mathrm{w} \in \mathrm{R}$.
Left multiplying equation (3.10) by $\alpha(\mathrm{w})$, we get
$\alpha(\mathrm{w}) \mathrm{F}(\mathrm{w}) \alpha(\mathrm{v}) \alpha[\mathrm{u}, \mathrm{w}]=0$, for all $\mathrm{u}, \mathrm{v}, \mathrm{w} \in \mathrm{R}$.
We subtracting equation (3.12) from equation (3.11), we get
$[\mathrm{F}(\mathrm{u}), \alpha(\mathrm{w})] \alpha(\mathrm{v})[\alpha(\mathrm{u}), \alpha(\mathrm{w})]=0$, for all $\mathrm{u}, \mathrm{v}, \mathrm{w} \in \mathrm{R}$.
We replacing $\alpha(\mathrm{u})$ by $\mathrm{F}(\mathrm{u})$ in the above equation, we get $[\mathrm{F}(\mathrm{u}), \alpha(\mathrm{w})] \alpha(\mathrm{v})[\mathrm{F}(\mathrm{u}), \alpha(\mathrm{w})]=0$, for all $u, v, w \in R$. Again replacing w by u in the above equation, we get
$[\mathrm{F}(\mathrm{w}), \alpha(\mathrm{w})] \alpha(\mathrm{v})[\mathrm{F}(\mathrm{w}), \alpha(\mathrm{w})]=0$, for all $\mathrm{v}, \mathrm{w} \in \mathrm{R}$.
Since α is an automorphism of R, we get $[F(w), \alpha(w)] R[F(w), \alpha(w)]=0$, for all $w \in R$. Since R is semiprime ring, we get $[F(u), \alpha(u)]=0$, for all $u \in R$.

Similar proof shows that the same conclusion holds as $F(u v)+H(v u)=0$, for all $u, v \in R$.
Hence the proof is completed.
Theorem 3.3: Let R be a semiprime ring, $F: R \rightarrow R$ is a generalized ($\alpha, 1$)-reverse derivation associated with $(\alpha, 1)$ - reverse derivation d and $H: R \rightarrow R$ be a right
α-centralizer. If $F(u) F(v) \pm H(u v)=0$, for all $u, v \in R$, then $d=0$. Moreover, $F(u v)=F(v) \alpha(u)$, for all $u, v \in R$ and $[F(u), \alpha(u)]=0$, for all $u \in R$.

Proof: By the hypothesis, we have $\mathrm{F}(\mathrm{u}) \mathrm{F}(\mathrm{v})-\mathrm{H}(\mathrm{uv})=0$, for all $\mathrm{u}, \mathrm{v} \in \mathrm{R}$.
Replacing u by uw in equation (3.13), we get
$(F(w) \alpha(u)+w d(u)) F(v)-\alpha(u) H(w v)=0$, for all $u, v, w \in R$.
$(F(w) F(v)-H(w v)) \alpha(u)+w d(u) F(v)=0$, for all $u, v, w \in R$.
Using (3.13) in the above equation, we get $\operatorname{wd}(u) F(v)=0$, for all $u, v, w \in R$.
Replacing v by tv in equation (3.14), we get $w d(u) F(v) \alpha(t)+w d(u) v d(t)=0$.
Using equation (3.14) in the above equation, we get $\operatorname{wd}(u) v d(t)=0$, for all $t, u, v, w \in R$. Replacing v by $v w$ and t by u in the above equation, we get $\operatorname{wd}(u) v w d(u)=0$, for all $u, v, w \in R$.

By the semiprimeness of R, we conclude that $w d(u)=0$, for all $u, w \in R$.
The equation (3.15) is same as equation (2.6) in lemma 2.2. Thus, by same argument of lemma 2.2, we can conclude the result $\mathrm{d}(\mathrm{u})=0$, for all $\mathrm{u} \in \mathrm{R}$.

By the definition of F, we get $F(u v)=F(v) \alpha(u)+v d(u)$, for all $u, v \in R$.
Using (3.16) in the above equation, we get $\mathrm{F}(\mathrm{uv})=\mathrm{F}(\mathrm{v}) \alpha(\mathrm{u})$, for all $\mathrm{u}, \mathrm{v} \in \mathrm{R}$.
Replacing u by $v u$ in equation (3.13), we get $F(v u) F(v)-H(v u v)=0$, for all $u, v \in R$. $(F(u) F(v)-H(u v)) \alpha(v)+u d(v) F(v)=0$, for all $u, v \in R$.

Using (3.13) in the above equation, we get $u d(v) F(v)=0$, for all $u, v \in R$.
Right multiplying equation (3.13) by $\alpha(v)$, we get
$\mathrm{F}(\mathrm{u}) \mathrm{F}(\mathrm{v}) \alpha(\mathrm{v})-\mathrm{H}(\mathrm{uv}) \alpha(\mathrm{v})=0$, for all $\mathrm{u}, \mathrm{v} \in \mathrm{R}$.
Using equation (3.18) in the above equation, we get
$\mathrm{F}(\mathrm{u}) \mathrm{F}(\mathrm{v}) \alpha(\mathrm{v})-\alpha(\mathrm{v}) \mathrm{H}(\mathrm{uv})=0$, for all $\mathrm{u}, \mathrm{v} \in \mathrm{R}$.
Subtracting equation (3.20) from equation (3.19), we get
$F(u)[F(v), \alpha(v)]=0$, for all $u, v \in R$.
Replacing u by ru in equation (3.21), we get
$\mathrm{F}(\mathrm{u}) \alpha(\mathrm{r})[\mathrm{F}(\mathrm{v}), \alpha(\mathrm{v})]+\mathrm{ud}(\mathrm{r})[\mathrm{F}(\mathrm{v}), \alpha(\mathrm{v})]=0$, for all $\mathrm{r}, \mathrm{u}, \mathrm{v} \in \mathrm{R}$.

Using equation (3.15) in the above equation, we get
$\mathrm{F}(\mathrm{u}) \alpha(\mathrm{r})[\mathrm{F}(\mathrm{v}), \alpha(\mathrm{v})]=0$, for all $\mathrm{r}, \mathrm{u}, \mathrm{v} \in \mathrm{R}$.
Replacing r by $t r$ in equation (3.22), we get
$\mathrm{F}(\mathrm{u}) \alpha(\mathrm{t}) \alpha(\mathrm{r})[\mathrm{F}(\mathrm{v}), \alpha(\mathrm{v})]=0$, for all $\mathrm{u}, \mathrm{v}, \mathrm{r}, \mathrm{t} \in \mathrm{R}$.
Left multiplying equation (3.22) by $\alpha(\mathrm{t})$, we get
$\alpha(\mathrm{t}) \mathrm{F}(\mathrm{u}) \alpha(\mathrm{r})[\mathrm{F}(\mathrm{v}), \alpha(\mathrm{v})]=0$, for all $\mathrm{u}, \mathrm{v}, \mathrm{r}, \mathrm{t} \in \mathrm{R}$.
Subtracting equation (3.24) from equation (3.23), we get
$[\mathrm{F}(\mathrm{u}), \alpha(\mathrm{t})] \alpha(\mathrm{r})[\mathrm{F}(\mathrm{v}), \alpha(\mathrm{v})]=0$, for all $\mathrm{u}, \mathrm{v}, \mathrm{r}, \mathrm{t} \in \mathrm{R}$.
Replacing t by u and v by u in the above equation, we get
$[\mathrm{F}(\mathrm{u}), \alpha(\mathrm{u})] \alpha(\mathrm{r})[\mathrm{F}(\mathrm{u}), \alpha(\mathrm{u})]=0$, for all $\mathrm{u}, \mathrm{r} \in \mathrm{R}$.
Since α is an automorphism of R, we get $[F(u), \alpha(u)] R[F(u), \alpha(u)]=0$, for all $u \in R$.
Since R is semiprime ring, we get $[F(u), \alpha(u)]=0$, for all $u \in R$.
Similar proof shows that the same conclusion holds as $\mathrm{F}(\mathrm{u}) \mathrm{F}(\mathrm{v})+\mathrm{H}(\mathrm{uv})=0$, for all $u, v \in R$. Hence the proof is completed.

Theorem 3.4: Let R be a semiprime ring, $F: R \rightarrow R$ is a generalized ($\alpha, 1$)-reverse derivation associated with $(\alpha, 1)$ - reverse derivation d and $H: R \rightarrow R$ be a right α-centralizer. If $\mathrm{F}(\mathrm{uv}) \pm \mathrm{H}(\mathrm{uv}) \in C_{\alpha, 1}$, for all $u, v \in R$, then $[\mathrm{d}(\mathrm{u}), \mathrm{u}]_{\alpha, 1}=0$, for all $u \in R$.

Proof: By the hypothesis, we have $\mathrm{F}(\mathrm{uv}) \pm \mathrm{H}(\mathrm{uv}) \in C_{\alpha, 1}$, for all $\mathrm{u}, \mathrm{v} \in \mathrm{R}$.
Using equation (2.12) in the above equation, we get $G(u v) \in C_{\alpha, 1}$, for all $u, v \in R$.
Using lemma 2.3 and lemma2.4, we get $[\mathrm{d}(\mathrm{u}), \mathrm{u}]_{\alpha, I}=0$, for all $\mathrm{u} \in \mathrm{R}$.
Hence the proof is completed.
Theorem 3.5: Let R be a semiprime ring, $F: R \rightarrow R$ is a generalized ($\alpha, 1$)-reverse derivation associated with $(\alpha, 1)$ - reverse derivation d and $H: R \rightarrow R$ be a right α-centralizer. If $\mathrm{F}(\mathrm{uv}) \pm \mathrm{H}(\mathrm{vu}) \in C_{\alpha, l}$, for all $u, v \in \mathrm{R}$, then $[\mathrm{d}(\mathrm{u}), \mathrm{u}]_{\alpha, l}=0$, for all $u \in \mathrm{R}$.

Proof: By the hypothesis, we have $\mathrm{F}(\mathrm{uv})-\mathrm{H}(\mathrm{vu}) \in C_{\alpha, 1}$, for all $\mathrm{u}, \mathrm{v} \in \mathrm{R}$.
Replacing u by $w v$ and v by u in equation (3.25), we get
$\mathrm{F}(\mathrm{vu}) \alpha(\mathrm{w})+\operatorname{vud}(\mathrm{w})-\alpha(\mathrm{u}) \alpha(\mathrm{w}) \mathrm{H}(\mathrm{v}) \in C_{\alpha, l}$, for all $\mathrm{u}, \mathrm{v}, \mathrm{w} \in \mathrm{R}$.
$(\mathrm{F}(\mathrm{vu})-\mathrm{H}(\mathrm{uv})) \alpha(\mathrm{w})+\mathrm{H}(\mathrm{uv}) \alpha(\mathrm{w})-\alpha(\mathrm{w}) \alpha(\mathrm{u}) \mathrm{H}(\mathrm{v})+\operatorname{vud}(\mathrm{w}) \in C_{\alpha, l}$, for all $\mathrm{u}, \mathrm{v}, \mathrm{w} \in \mathrm{R}$.
Using equation (3.25) in the above equation, we get
$\alpha(\mathrm{u}) \alpha(\mathrm{w}) \mathrm{H}(\mathrm{v})-\alpha(\mathrm{w}) \alpha(\mathrm{u}) \mathrm{H}(\mathrm{v})+\operatorname{vud}(\mathrm{w}) \in C_{\alpha, 1}$, for all $\mathrm{u}, \mathrm{v}, \mathrm{w} \in \mathrm{R}$.
$\mathrm{H}(\mathrm{v}) \alpha[\mathrm{u}, \mathrm{w}]+\operatorname{vud}(\mathrm{w}) \in C_{\alpha, 1}$, for all $\mathrm{u}, \mathrm{v}, \mathrm{w} \in \mathrm{R}$.
$[H(v) \alpha[u, w]+\operatorname{vud}(w), w]=0$, for all $u, v, w \in R$.
$[H(v) \alpha[u, w], w]_{\alpha, 1}+[\operatorname{vud}(w), w]_{\alpha, 1}=0$, for all $u, v, w \in R$.
$[\mathrm{H}(\mathrm{v}) \alpha[\mathrm{u}, \mathrm{w}], \mathrm{w}]_{\alpha, 1}+\mathrm{vu}[\mathrm{d}(\mathrm{w}), \mathrm{w}]_{\alpha, 1}+\mathrm{v}[\mathrm{u}, \mathrm{w}] \mathrm{d}(\mathrm{w})+[\mathrm{v}, \mathrm{w}] \mathrm{ud}(\mathrm{w})=0$, for all $\mathrm{u}, \mathrm{v}, \mathrm{w} \in \mathrm{R}$.
Replacing w by v in the above equation, we get
$[H(v) \alpha[u, v], v]_{\alpha, 1}+v u[d(v), v]_{\alpha, 1}+v[u, v] d(v)=0$, for all $u, v \in R$.
Replacing u by v in the above equation, we get $\mathrm{vu}[\mathrm{d}(\mathrm{v}), \mathrm{v}]_{\alpha, l}=0$, for all $\mathrm{v} \in \mathrm{R}$.
The equation (3.26) is same as equation (2.10) in lemma 2.3. Thus, by same argument of lemma 2.3, we can conclude the result $[\mathrm{d}(\mathrm{u}), \mathrm{u}]_{\alpha, I}=0$, for all $\mathrm{u} \in \mathrm{R}$.

Similar proof shows that the same conclusion holds as $\mathrm{F}(\mathrm{uv})+\mathrm{H}(\mathrm{vu}) \in C_{\alpha, 1}$, for all $\mathrm{u}, \mathrm{v} \in$ R. Hence the proof is completed.

Theorem 3.6: Let R be a semiprime ring, $F: R \rightarrow R$ is a generalized ($\alpha, 1$)-reverse derivation associated with $(\alpha, 1)$ - reverse derivation d and $\mathrm{H}: \mathrm{R} \rightarrow \mathrm{R}$ be a right α-centralizer. If $\mathrm{F}(\mathrm{u}) \mathrm{F}(\mathrm{v}) \pm \mathrm{H}(\mathrm{uv}) \in C_{\alpha, 1}$, for all $\mathrm{u}, \mathrm{v} \in \mathrm{R}$, then $[\mathrm{d}(\mathrm{u}), \mathrm{u}]_{\alpha, 1}=0$, for all $\mathrm{u} \in \mathrm{R}$.

Proof: By the hypothesis, we have $\mathrm{F}(\mathrm{u}) \mathrm{F}(\mathrm{v})-\mathrm{H}(\mathrm{uv}) \in C_{\alpha, 1}$, for all $\mathrm{u}, \mathrm{v} \in \mathrm{R}$.
Replacing u by wu in equation (3.27), we get
$(\mathrm{F}(\mathrm{u}) \alpha(\mathrm{w})+\mathrm{ud}(\mathrm{w})) \mathrm{F}(\mathrm{v})-\alpha(\mathrm{w}) \mathrm{H}(\mathrm{uv}) \in C_{\alpha, l}$, for all $\mathrm{u}, \mathrm{v}, \mathrm{w} \in \mathrm{R}$.
$(\mathrm{F}(\mathrm{u}) \mathrm{F}(\mathrm{v})-\mathrm{H}(\mathrm{uv})) \alpha(\mathrm{w})+\mathrm{ud}(\mathrm{w}) \mathrm{F}(\mathrm{v}) \in C_{\alpha, I}$, for all $\mathrm{u}, \mathrm{v}, \mathrm{w} \in \mathrm{R}$.
Using equation (3.27) in the above equation, we get
$\operatorname{ud}(\mathrm{w}) \mathrm{F}(\mathrm{v}) \in C_{\alpha, 1}$, for all $\mathrm{u}, \mathrm{v}, \mathrm{w} \in \mathrm{R}$.
Replacing v by vt in equation (3.28), we get $u d(w) F(t) \alpha(v)+\operatorname{ud}(w) \operatorname{td}(v) \in C_{\alpha, 1}$, for all $\mathrm{t}, \mathrm{u}, \mathrm{v}, \mathrm{w} \in \mathrm{R}$.

Using equation (3.28) in the above equation, we get $u d(w) \operatorname{td}(v) \in C_{\alpha, 1}$, for all $\mathrm{t}, \mathrm{u}, \mathrm{v}, \mathrm{w} \in \mathrm{R}$.
Replacing $\operatorname{td}(\mathrm{v})$ by v in the above equation, we get $\mathrm{ud}(\mathrm{w}) \mathrm{v} \in C_{\alpha, I}$, for all $u, v, w \in R$.
$[\operatorname{ud}(w) v, w]=0$, for all $u, v, w \in R$.
$\mathrm{uv}[\mathrm{d}(\mathrm{w}), \mathrm{w}]_{\alpha, 1}+[\mathrm{u}, \mathrm{w}] \mathrm{v}+\mathrm{u}[\mathrm{v}, \mathrm{w}]=0$, for all $\mathrm{u}, \mathrm{v}, \mathrm{w} \in \mathrm{R}$.
Replacing w byu in the above equation, we get $u v[d(u), u]_{\alpha, I}+u[v, u]=0$, for all $u, v \in R$. Again replacing $\mathrm{v} b$ yu in the above equation, we get
$\mathrm{uu}[\mathrm{d}(\mathrm{u}), \mathrm{u}]_{\alpha, l}=0$, for all $\mathrm{u} \in \mathrm{R}$.
The equation (3.30) is same as equation (2.10) in lemma 2.3. Thus, by same argument of lemma 2.3, we can conclude the result $[\mathrm{d}(\mathrm{u}), \mathrm{u}]_{\alpha, l}=0$, for all $\mathrm{u} \in \mathrm{R}$.

Similar proof shows that the same conclusion holds as $\mathrm{F}(\mathrm{u}) \mathrm{F}(\mathrm{v})+\mathrm{H}(\mathrm{uv}) \in C_{\alpha, 1}$, for all $u, v \in R$. Hence the proof is completed.

REFERENCES

[1] Aboubakr.A and Gonalaz.S., Generalized reverse derivations on semiprime rings, Siberian Math. J., 56(2)(2015), 199-205.
[2] Asma Ali and Ambreem Bano, Multiplicative (Generalized) reverse derivations on semiprime rings, European J. Pure and Appl. Math., 11(3)(2018), 717-729.
[3] Herstein.I.N., Jordan derivations of prime rings, Proc. Amer. Math. Soci., 8(1957), 1104-1110.
[4] Ibraheem.A.M., Right ideal and Generalized reverse derivations on prime rings, Amer. J. Comp. Appl. Math., 6(4)(2016), 162-164.
[5] Jaya Subba Reddy.C and Hemavathi.K., Reverse Derivations on Semiprime rings, Ultra Scientist of Physical Sciences (Int. J. Phy. Sci.), 26(1)A(2014), 111-113.
[6] Jaya Subba Reddy.C, Subbarayudu.K and Ramoorthy Reddy.B., Generalized (σ, τ) derivation in semiprime rings, Mth. Sci. Int. Res. J., 7(1)(2018), 161-166.
[7] Jaya Subba Reddy.C, Haseena.Sk., Homomorphism or Anti-Homomorphism of Left $(\alpha, 1)$ derivations in Prime rings, Int. J. Mathematical Archive, 12(5)(2021), 45-49.
[8] Jaya Subba Reddy.C and Haseena.Sk., ($\alpha, 1$)- Reverse derivations on Prime near-rings, Int. J. Algebra, 15(4)(2021), 165-170.
[9] Jaya Subba Reddy.C, Haseena.Sk. and Chennupalle Divya, On Jordan ideals and Generalized ($\alpha, 1$) - Reverse derivations in *-prime rings, Journal of University of Shanghai for Science and Technology, 23(11)(2021), 236-242.
[10] Jaya Subba Reddy.C, Haseena.Sk and Chennupalle Divya, Centralizing properties of $(\alpha, 1)$ - Reverse derivations in semiprime rings, Journal of Emerging Technologies and Innovative Research, 8(12)(2021), 45-50.
[11] Jaya Subba Reddy.C, Haseena.Sk and Venkata Sai Raghavendra Reddy.C., Symmetric Generalized ($\alpha, 1$)- Biderivations in Rings, The International Journal of Analytical and Experimental Modal analysis, 14(6)(2022), 1944-1949.
[12] Jaya Subba Reddy.C and Haseena.Sk., Symmetric Generalized Reverse ($\alpha, 1$) Biderivations in Rings, JP Journal of Algebra, Number Theory and its applications, 58(2022), 37-43.
[13] Samman.M and Alyamani.N., Derivations and reverse derivations in semiprime rings, Int. J. Forum, 39(2)(2007), 1895-1902.
[14] Sandhu.G.S and Kumar.D., Annihilator conditions of multiplicative reverse derivation on prime rings, Int. Elec .J. Algebra, 25(2019), 87-103.
[15] Tiwari.S.T, Sharma.R.K and Dhara.B., Some theorems of commutatively on semiprime rings with mapping, Southeast Asian Bull. Math., 42(2)(2018), 279-292.
[16] Yenigul.M.S. and Argac.N., On prime and semiprime rings with α-derivations, Turk. J. Math., 18(1994), 280-284.

