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Abstract: In the present paper, we find out a few results based on acceptable topology, 

discrete topology, hausdorff topology, topological transitivity, orbit of a point and dense 
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sensitive, dynamical system for compact sets and sensitive dependence on initial 

conditions (SDIC) and same results based on metric topology. 
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1. Introduction 

Poincare (1890), firstly introduced the topological notions and methods in dynamical 

systems. These notions were initially used for the analysis of ordinary differential 

equations. Poincare states that, “The Three Body Problem exhibits sensitive dependence on 

initial conditions (SDIC), so there is no „formula‟ for its solution”. Frink [9], states that 

various mathematical systems are lattices and topological spaces at the same time and 

along with this he discussed different methods of obtaining topologies on a lattice. The 

monograph “Analytic Topology” by Whyburn [15] provides a basic insight related to 

topological methods in dynamics. Birkhoff [2] explained the systematically development 

of topological dynamics, highlighting its essentially abstract character and made 

fundamental synonyms. A great contribution about the study of topological dynamics can 

be studied from Gottschalk and Hedlund [21] and order within chaos and its theory with 
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strange attracters by Berge et al. [5] and Eckmann et al. [22]. Chaotic dynamical systems 

and fractals theory by Devaney [7] and Barnsley [23] provide us the important information 

regarding our work. 

Topological conjugacy preserves topological notions like transitivity and periodicity, but 

sensitivity is dependent on the metric. Sensitivity is a result of transitivity and dense 

periodic points, as shown by Silverman [14] and Glasner et. al. [24]. Also, numerous 

dynamical characteristics can be defined in a natural fashion on Hausdorff spaces. In this 

paper, we have discussed the Hausdroff notion on some special subsets. 

The layout of this paper is as follows. Section 2, consists basic definitions, notation and 

preliminaries, which are useful in later section. The concept of compact metric spaces has 

also been introduced here to help us in obtaining its orbit precisely. Finally, topological 

versions of these aspects are given which will be helpful in studying this paper in detail. 

In Section 3, some fundamental results have been established based on topologies on 

spaces of subsets using concepts of topology. In this way, some new terms and results in 

the form of lemmas, remarks and propositions have been introduced. 

In Section 4, we have produced results based on Hausdroff and dense in topological 

spaces. 

 
2. Notations, Definitions and Preliminaries 

This section presents the basic definitions, notations and propositions giving insight to the 

study of dynamical systems orbit points and SDIC, which are used in later sections. 

Throughout this paper, we denote IN as the set of natural numbers, E(Y) as the selection of 

all nonempty closed sets of Y, K(Y) as the selection of all nonempty compact sets of Y and 

the finite topology on E(Y) as a neighbourhood topology. 

Chaos theory is the investigation of differential equations with SDIC that produce 

seemingly unpredictable time trajectories. 

Dynamical System [13]. A dynamical system with discrete time on topological space Y, 

including f : Y  Y as a selection {f n : n  IN}of continuous mappings on Y, beside f 0 is 

referred as the identity mapping, and f n+m(x) = (f no f m)(x) for all x  Y. Additionally, for 

each n  IN we can write, f n = f o f n-1. Furthermore, using induction method, f o f n-1 = f n-1o 

f. The pair (Y, f) is called a dynamical system.   

The function f is called topologically transitive (TT), if for arbitrary pair L and V   ‒ 

{},  a natural number m s.t. f m(L)∩V ≠ . 
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Compact metric space [19]. A metric space Y is compact metric space if each open cover 

of Y has a finite subcover. 

Hausdorff metric space [19]. A metric space Y is Hausdroff metric space if for arbitrary 

unequal x, y  Y,  open sets U, V ⊂ Y s.t. U ∩ V =  where x  U, y  V. 

As Chaos represents that the orbit structure is highly complex. It informs us that non- 

periodic points with dense orbits in space are arbitrarily close to a periodic point. As a 

result, being close to a point of a particular kind does not guarantee that the orbits will be 

comparable. This indicates that orbit behaviour cannot be predicted using estimations or 

precision. 

Sensitive dependence on initial conditions (SDIC) [20]. Considering (Y, f) as a 

dynamical system, then f has SDIC, if    0 s.t. for every x  Y and every 

neighbourhood W of x,  y W and some m  IN s.t. d(f m(x), f  m(y))  . Consequently if f 

has SDIC then the dynamical system (Y, f) is said to be sensitive. 

Perfect [20]. A topological space Y is called perfect if Y has no isolated point. 

Starting with a dynamical system (Y, f) and for all compact sets of Y that is K(Y), we have 

another dynamical system (K(Y), f*). Now there is a question of finding how their 

transitivities and sensitivities are related. For more information on the study of compact 

metric space one can go through the papers of Roman Flores [17], Gu et. al. [18], Kato‟s 

[19] and Yangeng et. al. [20]. Silverman [14] gave the following results, in 

proposition(1.1), for a dynamical system (Y, f), where Y is a metric space 

(i) If Y is perfect and f has a dense orbit, then f is TT. 

(ii) If Y is separable and of second category, then f is TT implies f has a dense orbit and in 

theorem (2.1), if Y is infinite, f has a dense orbit and SPP of f is dense, then f has SDIC. 

For the fundamental definitions for the metric spaces and topological spaces one can go 

through Munkres [12] and references there in. 

 
2.1. Topological Approach 

Remark.2.1.1.[20] A topological space T1 is perfect iff it has no finite open set.  

Proposition.2.1.2.[20] Suppose Y be a topological space and f is a continuous self map.  

(i) If Y has no finite open set and f has a dense orbit then f is topologically transitive (TT). 

(ii) If Y is a second countable of second category space, then f is topologically transitive  
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(TT)  implies that f  has a dense orbit. 

 

One possible replacement of sensitive dependence on initial conditions (SDIC) of f is that f 

has a dense orbit and set of periodic points (SPP) of f is dense. Birkhoff [6] introduced 

Moore Smith convergence of order topology in lattices and interval topology using closed 

intervals as a subbasis for closed sets and intrinsic topology using open intervals just as a 

subbasis for open sets. On the lattice F of all closed sets of a topological space Y, Moore- 

Smith convergence order topology and Interval topology, apart from being different, do not 

specialize to metric spaces and topological relativization (called admissible in regard to the 

topology of Y by Michael [11]) which means Y is homeomorphic to a subspace of F. Frink 

[9] introduced and obtained results about neighbourhood topology on the lattice F of all 

closed sets of a topological space. 

3. Topologies on Spaces of Subsets 

Michael [11], has made use of Vietoris or finite topology on the following spaces of 

subsets based on topological space Y. For all n  IN, suppose Jn = {mIN : m ≤ n}. 

Consider  = {Jn : n  IN} is a base for a topology on IN. Let k  IN and for every n  IN, 

suppose Jkn = {mIN : k ≤ m ≤ n}, furthermore k = {Jkn : n  IN} is a base for a topology 

on IN. Here K(IN) and E(IN) are not interesting classes. Considering a topological space Y, 

suppose p as a property of subsets of Y simultaneously a set or at the same time a 

topological space. Suppose p(Y) = {A  Y ; A is nonempty and have property p}. For some 

H  Y, let p(H) = {A  p(Y) : A  H}, and p*(H) = {A  p(Y) : A∩H ≠ }. For subsets H1, 

H2…....., Hn of Y, let p(H1, H2…....., Hn) = {A  p(Y) : A  Hi for all i  Jn}, and p*(H1, 

H2…..Hn) = {A  p(Y) : A∩Hi ≠ ,  i  Jn }. Now, we present fundamental results for the 

topological space p(Y). 

Remark.3.1.1. For subsets K, H1, H2…..Hn and V1, V2…..Vm of Y, let H = {Hi : i  Jn} and 

V = {Vi : i  Jm}.  

(i) p(H1, H2…..Hn)  = ∩{p*(Hi) : i  Jn}∩p(H), 

(ii) p(K) = p(Y) – p*(Y – K) and p*(K) = p(Y) – p(Y – K) then p(K)  p*(K), 

(iii) ∩{p(Hi) : i  Jn} = p(∩{Hi : i  Jn}), 

(iv) ∩{ p*(Hi) : i  Jn} = p*(H1, H2,…..,Hn) = p(Y, H1, H2,…..,Hn), 

(v) p(H1,H2,…..,Hn)∩p(V1,V2,…..,Vm) = p(V∩H1,V∩H2…..V∩Hn,H∩V1,H∩ 

V2,…..,H∩Vm), 
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(vi) p(H1, H2,…..,Hn)  p(V1,V2,…..,Vm) iff H  V, for each Vi  Hj Vi , 

(vii) ∩{p*(Hi) : i  Jn}∩p(K) = p(K, K∩ H1, V∩ H2,…..,K∩Hn), 

(viii) p(H1, H2,…..,Hn) ∩ p(V1, V2,…..,Vm) ≠  iff for each Hi  Vij s.t.  Hi∩Vij  ≠  and for 

each Vi  Hij s.t. Vi∩Hij ≠ . 

(ix) p(K) = p*(K) iff for A  p(Y), and A∩K ≠  implies A  K. 

Let 1 = {p(L) : L  } and 2 = {p*(L) : L  } thus   = 12. Let  = {p(L1, 

L2,…..,Ln) : Li    i  Jn}. Let 2 be the selection of all finite intersections of members 

of 2. Let 1*,2* and * be topologies on p(Y) generated 1, 2 and  respectively. 

Remark.3.1.2. (a) Suppose 1     and 2   accordingly 1 and  are closed under finite 

intersections and so 1 is a base considering 1* and  is a base considering *. Since  is the 

selection of all finite intersections of members of 12, therefore * = sup{1*,2*}. 

Now onwards p(Y) is the topological space with topology 1*,2* or *. A topology on E(Y) 

is called acceptable, if p(K) is closed  K closed in Y and is open  K open in Y [see 

Michael [11]]. 

Remark.3.1.2. (b) (i) a topology  on p(Y) is acceptable iff 1 2  .  

(ii) If K is closed in Y, then p(K) is closed in 2* and *, hence p*(K) is closed in 1* and *.  

(iii) * is the smallest acceptable topology on p(Y). 

Let F1(Y) continue as the selection of all singleton subsets of Y and F(Y) continue as the 

selection of all nonempty finite subsets of Y. If F1(Y)  p(Y), then define a map i : Y  p(Y) 

as i(x) = {x} for each x  Y. 

Remark.3.1.3. Let F1(Y)  p(Y).  

(a) Let A  Y, then 

(i) i(A) = p(A)∩i(Y) = p*(A)∩i(Y).  

(ii) A = i-1 (p(A)) = i-1(p*(A)).  

(iii) If p(A)  *, then A is open in Y.  

(b) For subsets H1, H2,…..,Hn of Y then p(H1, H2…..Hn) ∩ i(Y) ≠  iff ∩{Hi : I  i Jn} ≠ .  

(c) Let A  p(Y, H1, H2,…..,Hn). If Hi`s are pair wise disjoint, then A contains at least n 

elements. 

Proposition.3.1.4. (a) Let F1(Y)  p(Y), then 

(i) 1*,2* and * are admissible with the topology  of Y.  

(ii) F1(Y) is dense in (p(Y), 1*).  
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(iii) If (p(Y), 1*) is discrete, then F1(Y) = p(Y).  

(b) If F(Y)  p(Y), then F(Y) is dense in (p(Y), 2*) and (p(Y), *). 

Proof. By Remark3.1.3, i : Y  p(Y) is an embedding with topology 1*,2* or *. F1(Y) = 

i(Y). Every member of  contains a finite subset of Y. 

Lemma.3.1.5. If F(Y)  p(Y) and p(H1, H2,…..,Hn) = {A}, then A is finite, {Hi : i  Jn} = A 

and Hi is singleton  i  Jn. 

Proof. For i  Jn, let xi  Hi∩A. Then A = {xi : i Jn}. Since for x  Hi, A{x} ‒ {xi}  p(H1, 

H2,…..,Hn), {Hi : i  Jn} = A. If xi, xj  Hi, then A ‒ {xi}  p(H1, H2,…..,Hn). Therefore, Hi 

is singleton  i  Jn. 

Proposition.3.1.6. Let F(Y)  p(Y).  

(i) If Y has an isolated point, then (p(Y), 1*) and (p(Y), *) each has an isolated point.  

(ii) If (p(Y), 1*) or (p(Y), *) has an isolated point, then Y has an isolated point.  

(iii) If (p(Y), 2*) has an isolated point, then Y is a singleton. 

Proof. (i) If L  Y is a singleton then p(L) is a singleton.  

(ii) If p(L1, L2,…..,Ln)   equals {A}, then, by Lemma3.1.5, each Gi is a singleton.  

(iii) If (p(Y), 2*) has an isolated point {A}, then, in view of (iv) of Remark3.1.1, {A} = p(Y, 

L1, L2,…..Ln). Now, by Lemma3.1.5, Y is a singleton. 

Proposition.3.1.7. Let F(Y)  p(Y). (p(Y), *) is discrete iff Y is discrete and p(Y) = F(Y). 

Proof. Suppose (p(Y), *) is discrete. Since * is admissible, Y is discrete. Let A  p(Y). {A} = 

p(L1, L2,…..Ln). By Lemma3.1.5, A is finite. Let Y be discrete and p(Y) = F(Y). Then, for A  

p(Y), A = {xi : i Jn} and {A} = p({x1}, {x2},…{xn}). 

For n  IN, let Fn denotes the all nonempty subsets of Y having at most n elements. 

Proposition.3.1.8. (a) Let F1(Y)  p(Y). If Y is Hausdorff, then i(Y) is closed in (p(Y), 2*) 

and (p(Y), *). If i(Y) is closed in (p(Y), *), then Y is T1.  

(b) Let F(Y)  p(Y). If Y is Hausdorff, then, for each n  IN, Fn is closed in (p(Y), 2*) and 

(p(Y), *). 

Proof. (a) Let A  cl(i(Y))  ̶  i(Y). Let x, y  A, x ≠ y.  L, V open in Y s.t. xL, yV and L ∩V 

= . We have A  p(Y, L, V)  2. By Remark3.1.3, p(Y, L, V)∩i(Y) = . Therefore, i(Y) is 

closed in (p(Y), 2*) and (p(Y), *). Let x, y  Y, x ≠ y. Let A = {x, y}.  p(L1, L2,…..,Ln)   

s.t. A  p(L1, L2,…..,Ln) and p(L1, L2,…..,Ln)∩i(Y) = . By an application of Remark3.1.3,  

Li, Lj s.t. x  Li and y  Li, and y  Lj and x  Lj .  
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(b) We prove by induction Fn is closed in (p(Y), 2*) and (p(Y), *). Let A be a set containing 

at least n+1 elements x1, x2,…...,xn+1.  pair wise disjoint open sets L1, L2,…Ln+1 containing 

x1, x2,…....,xn+1 respectively. A  p(Y, L1, L2,…..,Ln+1). By Remark3.1.3, p(Y, L1, 

L2,…...,Ln+1)∩Fn = . Hence Fn is closed in (p(Y), 2*) and (p(Y), *). 

Remark.3.1.9. (i) If Y = {Hi : iI}, then p(Y) = {p*(Hi) : iI}.  

(ii) If F1(Y)  p(Y) and p(Y) = {p*(Hi) : iI}, then Y = {Hi : iI}. 

Proposition.3.1.10. Let F1(Y)  p(Y).  

(a) If (p(Y), 2*) or (p(Y), *) is compact, then Y is compact.  

(b) If Y is compact, then (p(Y), 2*) is compact. 

Proof. (a) Considering an open cover {Hi : i  I} of Y, by Remark3.1.9 (i), {p*(Hi) : i  I} 

will be an open cover of p(Y) in 2* and *. If {p*(Hi) : i  J} is a finite subcover of p(Y), 

then by Remark3.1.9 (ii), {Hi : i  J} will be a finite subcover of Y.  

(b) For an open cover {p*(Hi) : i  I} of (p(Y), 2*), by Remark3.1.9 (ii), {Hi : i  I} will be 

an open cover of Y. Again using Remark3.1.9 (i), we get a finite subcover of (p(Y), 2*). 

4.  SOME NEW RESULTS 

In this section, we present a few results for F(Y) in terms of Hausdroff metric space and 

dense. 

Considering (Y, d) be a metric space. Suppose if, U  Y and x  Y, then define, d(x, U) = 

inf{d(x, y) : y  U}. Furthermore, for U, V  K(Y), then define (U, V) = sup{d(x, U) : x  V} 

and d*(U, V) = sup{d*(U, V), d*(V, U)}. Here, it is noticeable that, ((K(Y), d*) is a metric 

space where d* is the Hausdorff metric on K(Y). 

Lemma.4.1.1. Let U  Y be compact. For r > 0, let y1, y2,…....,yn  U and for i  Jn, Si = S(yi, 

r). Let U  {Si :  i  Jn}. If for each i  Jn, xi  Si and K = {x1, x2,…...,xn}. Then  

(i) (K, U) ≤ 2r.   

(ii) If, for each i  Jn, xi  U, that is K  U, then d*(K, U) ≤ 2r. 

Proof. If K  U, implies d(x, U) = 0  x  K, therefore (U, K) = 0.  

(i) Let y  U. , j  Jn s.t. y  Sj. Furthermore, d(y, K) ≤ d(y, xj) ≤ d(y, yj) + d(yj, xj) < 

2r. This implies that (K, A) ≤ 2r. 

(ii) The proof of (ii) is similar to (i). 

Proposition.4.1.2. F(Y) is dense in (K(Y), d*). 

Proof. Let U  K(Y) and t > 0. Let r = t/3. {S(y, r) : y  U} is an open cover of U. So  y1, 
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y2,…....,yn  U s.t. U  {Si : i  Jn}, where Si = S(yi, r). Let, for i  Jn, xi  U ∩ Si. Let K = 

{x1, x2,…....,xn}. By Lemma4.1.1 (ii), we have d*(K, U) ≤ 2r < t. Therefore, K  S*(U, t). 

Thus, F(Y) is dense in (K(Y), d*). 

Remark.4.1.3. Consider D be a subset of metric space Y. Then,  = {S(x, t) : x  D, t > 0} is 

a base for the topology of Y if D is dense. 

Corollery.4.1.4. Let * = {S*(K, t) : K  F(Y), t > 0} is a base for d*. 

Proof. The proof of this corollary directly follows from Remark4.1.3. 

Lemma.4.1.5. Let U, K  Y, where U is compact and K = {x1, x2,…xn}. If (U, K) < t, again 

for every, i  Jn,  yi  U s.t. d(xi, yi) < t. 

Proof. Let i  Jn. d(xi, U) is continuous and U is compact, therefore  yi  U s.t. d(xi, U) = 

d(xi, yi). Since (U, K) = sup{d(xi, U) : xi  K}, d(xi, U)  ≤ (U, K) < t. Hence d(xi, yi) < t. 

Proposition.4.1.6. ({x}, U) < t iff U  S(x, t). 

Proof.  ({x}, U) = sup{d(y, x) : y  U}. Suppose ({x}, U) < t. Let y  U and d(y, x). So y  

S(x, t).  y*  U s.t. d(y*, x) = ({x}, U). Since y*  U, d(y*, x) < t. So ({x}, U) < t. 

Lemma.4.1.7.  Let K = {x1, x2,…...,xn} and t > 0. Let for i  Jn, Si = S(xi, t). Let U  K(Y), 

then  

(i) U  { S(xi, t) : i  Jn} iff (U, K) < t.  

(ii) U S(xi, t)  iJn  iff (K, U) < t. 

Proof. Since (U, K) = sup{d(xi, U) : xi  K},  xj  K s.t. (U, K) = d(xj, U).  y*  U s.t. 

(K, U) = d(y*, K).  

(i) Let U  {S(xi, t) : iJn}. y*  Sj for some j  Jn. (K, U) = d(y*, K)  d(y*, xj) < 

t. Now let y  U. For some j  Jn, d(y, xj) = d(y, K)  (K, U) < t. So y  Sj.  

(ii) Let yi  U  Si, for i Jn.  xj  K s.t. (U, K) = d(xj, U)  d(xj, yj) < t. Let i  Jn. 

For some yi  U, d(xi, yi) = d(xi, U)  (U, K) < t. 

Proposition.4.2.1. (U, {x}) = d(x, U) ≤ d(x, y) for all, y  U ≤ sup{d(y, x) : y  U} = ({x}, 

U). (U, {x}) ≤ ({x}, U), d*(U,{x}) =({x}, U). 

Proof. (U, {x}) = sup{d(x, U) : x  V} = d(x, U). ({x}, U) = sup{d(y, x) : y  U}. d(x, U) ≤ 

d(x, y) ≤ sup{d(y, x) : y  U} = ({x}, U). 

Proposition.4.2.2. If V  V*, then (U, V) ≤ (U, V*). In particular, ({x}, U) ≤ (K, U) for 

all x  K. 
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Proof. (U, V) = sup{d(x, U) : x  V} ≤ sup{d(x, U) : x  V*} =(U, V*). 

Proposition.4.2.3. If U  U*, then (U*, V) ≤ (U, V). 

Proof. d(x, U*) ≤ d(x, U), sup{d(x, U*) : x  V} ≤ sup{d(x, U) : x  V}.  
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