
International Journal of Engineering, Science and Mathematics
Vol. 10 Issue 03, March 2021,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: editorijmie@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed &

Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A

71 International Journal of Engineering, Science and Mathematics

http://www.ijesm.co.in, Email: editorijmie@gmail.com

PREDICTIVE MODELING FOR QUERY PERFORMANCE TUNING IN

DATABASE MANAGEMENT SYSTEMS

Moolchand

Research Scholar:- Sunrise University, Alwar, Rajasthan

Dr Kushum Rajawat

Assistant professor Sunrise University, Alwar, Rajasthan

Abstract

The execution inertness of applicant plans is inadequately anticipated by logical expense

models, which are habitually utilized by streamlining agents to look at up-and-comer plan

costs. This examination researches the materialness and utility of cutting edge learning-

based models, which have of late been effectively used to a scope of predicative issues, as a

seriously encouraging way to deal with QPP. The runtime conduct of contemporary

database management frameworks (DBMS) can be changed utilizing an enormous number

of adjustable handles. It tends to be improved by appropriately arranging these handles for

an application's responsibility. the DBMS's adequacy and effectiveness. Be that as it may,

because of their intricacy, DBMS tuning much of the time requires a lot of work from

proficient database managers (DBAs). When contrasted with gifted DBAs, late work on

computerized tuning techniques utilizing AI (ML) has shown to give better performance.

Notwithstanding, these ML-put together methods were tried with respect to fake jobs with

not many opportunities for changing, hence it is muddled if they could be as successful in a

certifiable setting.

Keywords: Query Performance,Tuning,Management,Predictive,Database

1. INTRODUCTION

In the world of database management systems (DBMS), optimizing query performance is

crucial for ensuring effective and fast data retrieval. Organizations must optimize their

database systems to handle complicated queries and provide results quickly as data

quantities continue to expand dramatically. Predictive modelling, a useful technique that

makes use of past data and statistical algorithms to forecast query performance and direct

tuning efforts, has become available as a solution to this problem. In predictive modelling,

correlations between numerous elements influencing query performance, such as database

 ISSN: 2320-0294Impact Factor: 6.765

72 International Journal of Engineering, Science and Mathematics

http://www.ijmra.us, Email: editorijmie@gmail.com

structure, query complexity, hardware configuration, and workload characteristics, are

captured mathematically. These models are developed using historical data that includes

the times at which queries were executed together with the corresponding environmental

and query-specific characteristics. The models can accurately forecast how queries will

perform in various settings by analyzing this data to find patterns, correlations, and

dependencies.

To proactively detect potential bottlenecks, inefficiencies, or suboptimal setups within the

DBMS environment is the main goal of predictive modelling for query performance

tuning. Database administrators (DBAs) can decide on system configuration, query

optimization techniques, and resource allocation to attain optimal performance levels by

properly forecasting the performance of queries. Comparing predictive modelling to

conventional methods for query performance adjustment, there are a number of benefits.

DBAs can first and foremost adopt a pro-active stance by spotting and resolving potential

performance issues before they worsen. Predictive models can identify underlying patterns

and trends by using previous data, allowing for targeted optimization efforts as opposed to

depending simply on reactive tuning techniques. Predictive modelling also enables

scenario analysis and what-if simulations, allowing DBAs to weigh the effects of various

tuning techniques or adjustments to workload patterns.

DBAs can test the efficacy of suggested optimization’s without interfering with the

environment of live production by replicating these scenarios. Additionally, by offering

quantitative insights into the anticipated performance benefits brought on by particular

tuning operations, predictive modelling supports decision-making. By prioritizing their

work based on the potential influence on query execution times, DBAs are given the ability

to maximize resource allocation and reduce performance-related expenditures. For the

purpose of query performance adjustment, a variety of statistical and machine learning

techniques can be used for predictive modelling. To create predictive models based on

historical data, regression analysis, time series analysis, and machine learning techniques

including decision trees, random forests, and neural networks are frequently used.

2. REVIEW OF LITREATURE

A thorough investigation into predictive modelling for self-tuning database systems is

presented by Baeza-Yates et al. (2006). The authors suggest a method for forecasting

future query performance using historical query execution data. They investigate the

 ISSN: 2320-0294Impact Factor: 6.765

73 International Journal of Engineering, Science and Mathematics

http://www.ijmra.us, Email: editorijmie@gmail.com

development of prediction models using statistical and machine learning methods, taking

into account variables like query complexity, database structure, and workload

characteristics. The study emphasises the value of proactive performance tuning and shows

how their method effectively improves query performance.

An overview of query optimisation strategies in relational database systems is given by

Chaudhuri (2005). The study provides insightful information about the broader context of

query optimisation, despite not being exclusively focused on predictive modelling. It talks

about several optimisation algorithms, cost estimation methods, and plan selection tactics.

To incorporate predictive modelling into the query optimisation process, it is essential to

comprehend these optimisation strategies.

A study on predictive modelling that is especially suited for query performance in parallel

database systems is presented by Gupta et al. in 2003. The authors suggest an approach

that gauges workload and system factors to forecast query execution time. To create

prediction models, they use machine learning techniques like decision trees. The study

illustrates the efficiency of their approach in enabling proactive performance adjustment in

parallel database systems and properly projecting query performance.

The book by Snodgrass is a thorough resource on database tuning, complete with

principles, experiments, and troubleshooting methods. Although it is not only concerned

with predictive modelling, it does encompass significant ideas and tactics pertinent to

query performance optimisation. Different tuning methodologies, query optimisation

tactics, and performance analysis methods are covered in the book. It is a useful resource

for comprehending predictive modeling's broader context in the area of database tuning.

A study by Witkowski et al. (2009) uses machine learning approaches to create predictive

models for database system performance modelling. The authors suggest an approach for

forecasting query response times that combines past query execution data with system and

workload variables. To build prediction models, they use decision trees and regression

analysis. The study exhibits the potential for precise query response time prediction and

emphasises the efficiency of machine learning in capturing the correlations between

numerous parameters influencing query performance.

Neural networks are suggested by Wong and Leung (2002) for application in distributed

database systems' predictive modelling of query performance. The authors concentrate on

the difficulty of foreseeing how long sophisticated queries would take to execute in a

distributed system. In order to anticipate query response times precisely, they describe a

neural network-based methodology that takes into consideration query attributes, system

 ISSN: 2320-0294Impact Factor: 6.765

74 International Journal of Engineering, Science and Mathematics

http://www.ijmra.us, Email: editorijmie@gmail.com

factors, and workload characteristics. The study shows how well neural networks can

capture the complex interactions between different variables and highlights the promise of

predictive modelling for improving query efficiency in distributed database systems.

Selectivity estimate, a key component of query performance adjustment, is a problem that

Viglas (2000) addresses. In order to assess query selectivity and provide an accurate

prediction of query execution durations, the study presents an adaptive sampling technique.

The method intelligently samples the data and then modifies the sample size in real time to

capture the distributional properties of the underlying data. The study demonstrates how

adaptive sampling can enhance selectivity estimation and, as a result, query performance.

3. AUTOMATED TUNING FIELD STUDY

The previously mentioned issues stress the weaknesses in current examinations of setup

change strategies. These outlines support the need for a more exhaustive examination to

decide if robotized tuning systems are valuable for DBMS establishments in reality.

We plan to decide the compromises of ML-based calculations and the sum to which human

management matters on the off chance that computerized tuning ends up being functional

in these organizations.

At the global bank Société Générale (SG), we assessed the Otter Tune system in 2020.

Prophet is utilized by SG for most of their database applications on confidential cloud

framework. For DBMS executions that utilization a calibrated arrangement in view of the

expected responsibility (for instance, OLTP versus OLAP), they offer self-administration

provisioning. These Prophet organizations are managed by a gathering of proficient DBAs

with handle tuning experience. Our field study's goal is to decide if robotized tuning can

support a DBMS's performance far in excess of what their DBAs can do physically.

We give the particulars of our OtterTune arrangement at SG in this segment. We start by

illustrating the distinctions between the objective database responsibility and fake

benchmarks. We then, at that point, proceed to talk about SG's working climate and the

troubles we experienced while dealing with a robotized tuning administration.

3.1 Objective Database Programmed

For SG's IT foundation, an inside issue following apparatus called Ticket Tracker gave the

information and responsibility follow that we utilized in our examination. The fundamental

elements of ticket Tracker are equivalent to those of other well known project management

apparatuses like Atlassian Jira and Mozilla Bugzilla. The work tickets submitted all

through the whole association are followed by this application. Since SG utilizes around

140,000 individuals around the world, the responsibility examples and query appearance

 ISSN: 2320-0294Impact Factor: 6.765

75 International Journal of Engineering, Science and Mathematics

http://www.ijmra.us, Email: editorijmie@gmail.com

rate for ticket Tracker are to a great extent consistent all through the functioning week, 24

hours per day. SG as of now uses Prophet v12.1 to control ticket Tracker. To consolidate

the database and query follow data, we made special announcing instruments. From this

examination, we currently give a significant level outline of ticket Tracker.

Table 1:Query Plan Operators: The proportion of each operator type in the queries in the

ticket Tracker workload

Operator Type % Of Queries

Table Access By Index Rowed 42%

Index Range Scan 30%

Index Unique Scan 20%

Sort Order By 15%

Table Access Full 16%

All Others 20%

Figure 1: Query Plan Operators: The proportion of each operator type in the queries in the

ticket Tracker workload

Database:Utilizing the Prophet Recuperation Supervisor instrument, we took a depiction

of the TicketTracker database from its creation server.

The database's uncompressed size is roughly 1.1 TB, of which 54% are huge articles

(Hurls), 27% are table items, and 19% are table files. This Throw information is imperative

since no earlier work has analyzed the component of DBMS tuning that Prophet uncovered

handles that influence how it keeps up with Hurls.

3.2 Deployment

In SG's confidential cloud, we set up five different Prophet v12.2 frameworks to have the

TicketTracker database and responsibility. The equipment arrangement was equivalent to

42%

30%

20%

15%

16%

20%

0% 5% 10% 15% 20% 25% 30% 35% 40% 45%

TABLE ACCESS BY INDEX ROWED

INDEX RANGE SCAN

INDEX UNIQUE SCAN

SORT ORDER BY

TABLE ACCESS FULL

ALL OTHERS

Queries

 ISSN: 2320-0294Impact Factor: 6.765

76 International Journal of Engineering, Science and Mathematics

http://www.ijmra.us, Email: editorijmie@gmail.com

what was utilized for the creation occasion. A virtual machine (VM) with 12 vCPUs (Intel

Xeon central processor E5-2697v4 @ 2.30 GHz) and 64 GB Smash controls every DBMS

occurrence. The VMs were set up to keep in touch with a NAS shared plate that is

available in similar server farm. The typical read and compose latencies for this capacity

are 6.7 ms and 8.3 ms, separately, as demonstrated in our prior analyze in Figure 3.

Every Prophet occurrence's underlying handle design is browsed a bunch of pre-tuned

setups that SG use all through their entire armada. For putting in new DBMSs, the SG IT

group offers their staff a self-administration online gateway. A client should demonstrate

the expected responsibility that the DBMS will uphold as well as picking the equipment

design of the new DBMS, (for example, the quantity of central processor centers and

Smash), like OLTP, OLAP, or HTAP. The handle setup that has been pre-tuned by the SG

managers for the picked responsibility type is introduced by the provisioning framework.

Indeed, even while these arrangements perform better compared to Prophet's default

settings, they just change 4-6 handles and are as yet not upgraded for the jobs of the

different applications. Accordingly, the DBA further altered a portion of the pre-tuned

design's handles for the TicketTracker responsibility, including one that improves Hurl

performance.3

The OtterTune tuning supervisors and regulators were undeniably introduced in similar

server farm as the Prophet DBMSs. Every part was worked in a Docker compartment with

eight virtual central processors and 16 GB of Slam. There is a particular OtterTune tuning

director relegated to every DBMS occasion. This partition quits preparation information

assembled during one meeting from being utilized during another, which will affect the

calculations' viability and combination rate.

4. TUNING ALGORITHMS

Understanding how the DBMS design tuning methods that have been presented as of late

respond in genuine circumstances and under what conditions one performs better

compared to others is our point. To do this, we upgraded Otter Tune to remember support

for various calculations for its tuning administrator. Subsequently, we can send a singular

stage without fundamentally changing the tuning methodology.

We currently go over the three strategies that we tried: Profound Brain Organization

(DNN), Profound Deterministic Approach Angle (DDPG), and Gaussian Interaction

Relapse (GPR). Despite the fact that there are different calculations that utilization query

information to coordinate the hunt cycle they can't be utilized at SG in light of the fact that

to protection issues since the questions contain information that can be utilized to

 ISSN: 2320-0294Impact Factor: 6.765

77 International Journal of Engineering, Science and Mathematics

http://www.ijmra.us, Email: editorijmie@gmail.com

recognize explicit clients. The reason for this paper does exclude methods for anonymizing

this information.

Figure 2: The GPR/DNN Tuning Pipeline totals the crude information from each past

work and thinks about it to the ideal responsibility.

Figure 3: The crude information is changed into states, activities, and prizes, and

afterward took care of into the replay memory utilizing the DDPG Tuning Pipeline.

4.1 GPR — OtterTune (2017)

In view of the first calculation upheld by Otter Tune, we executed GPR. The distance

between the test point and each preparing point is determined involving a Gaussian

interaction as an earlier over capability. The calculation gauges the test point worth and

vulnerability utilizing piece capabilities.

Otter Tune's GPR pipeline has two phases, as displayed in Figure 2. Otter Tune's

information vault's handle and metric information are ready in the main stage, called

information pre-handling. The subsequent stage, known as "Handle Suggestion," picks

values for the handles.

Pre-handling of information: The objective of this stage is to make the estimations less

layered and distinguish the key tuning handles. The assistance makes handle designs for

the objective DBMS utilizing the consequence of this stage. This stage is occasionally

 ISSN: 2320-0294Impact Factor: 6.765

78 International Journal of Engineering, Science and Mathematics

http://www.ijmra.us, Email: editorijmie@gmail.com

shown behind the scenes to Otter Tune. The length of every summon differs as per the

amount of tests and DBMS measurements.

The Information Pre-Handling stage at first picks a gathering of DBMS measurements that

best catch the performance changeability and unmistakable characteristics of a specific

responsibility. The measurements are separated into a more modest gathering of elements

by the calculation utilizing a dimensionality decrease method called factor examination,

which likewise catches the relationship examples of the first factors. The coefficients of

each component, which are direct blends of the first factors, can be grasped similarly as the

coefficients of straight relapse. Subsequently, the elements can be positioned by how much

changeability in the first information they represent. At long last, the calculation picks one

delegate measure from each gathering and uses k-implies bunching to bunch the parts with

comparative connection designs.

Finding the responsibility that Otter Tune tuned in the past that most intently looks like the

ongoing responsibility is the initial step. This earlier data is utilized to "bootstrap" the new

meeting. The strategy does this by foreseeing the measurement upsides of the objective

DBMS's responsibility given the positioned posting of handles utilizing the result

information from the initial step.

The information from the objective responsibility and the responsibility that is the most

comparative is then utilized by the help to make a GPR model. The model results the pair

(y,u) involving the planned goal esteem (y) and the vulnerability esteem (u) for the

predefined cluster of handles (x). The calculation adds y and u to decide the upper certainty

limits (UCB). From that point forward, it applies slope climb to the UCB to recognize the

handle settings that ought to bring about a positive goal esteem. The handle design for the

objective DBMS is prompted in view of the greatest worth among those nearby optima, not

entirely settled by performing slope plummet to get the neighborhood ideal from each

beginning stage.

How the calculation handles the compromise between investigation (i.e., assembling new

information to construct the model) and double-dealing (i.e., endeavoring frantically to

prevail on the objective) is a vital issue in this cycle. Otter Tune changes the UCB's

vulnerability weight to control investigation and abuse.

5. EVALUATION

The results of our correlation of the previously mentioned tweaking methods for SG's

Prophet establishment on ticket Tracker are currently introduced.

 ISSN: 2320-0294Impact Factor: 6.765

79 International Journal of Engineering, Science and Mathematics

http://www.ijmra.us, Email: editorijmie@gmail.com

Since irregular examining methods are direct yet shockingly effective, they are utilized as

serious baselines for assessing improvement calculations Latin Hypercube Inspecting

(LHS) an arbitrary testing procedure, fills in as the establishment for our examination. LHS

is a space-filling strategy that tries to uniformly disperse test focuses among every possible

worth. In high layered spaces, these strategies are commonly more compelling than

gullible irregular testing, especially while gathering not many examples in contrast with

the all out number of potential qualities.

We start by playing out a fundamental examination of the performance measures for SG's

current circumstance's fluctuation. This clarification is expected to explain how we

complete our analyses and how we dissect their results in the following parts.

5.1 Performance Variability

We introduced the Prophet DBMS on various virtual machines (VMs) to execute the

tuning meetings in equal in light of the fact that each tuning meeting in our examinations

requires a few days to finish. During this time, our virtual machines keep on working on

similar actual machines, however different occupants on these machines or in a similar

rack might change. Running a DBMS in virtualized settings with shared capacity, as was

shrouded in Segment 2.2, could bring about surprising varieties in the framework's

performance between occasions with similar equipment distributions along with inside a

similar example.

We estimated the performance of our VMs once every week for a time of a half year to

more readily fathom the greatness of this unusualness in SG's server farm. We execute the

10-minute piece of the ticket Tracker responsibility with the default settings for SG. Figure

8's discoveries show the development of the DB Time measure for each VM case. The

principal finding from this information is that, regardless of having a similar arrangement

and responsibility as the DBMS, the performance of the DBMS on a similar VM could

differ by as much as 4. For example, the DB Time for VM02 in July is higher than

whatever we kept in June. That's what the following finding is, even inside a humble

window, VMs' overall performance can change.

We imagine that the common circle stockpiling's inertness spikes are at fault for these

problematic outcomes. Figure 9 shows the computer processor active time and I/O delay

for one VM running the DBMS during a tuning meeting. These discoveries show a

connection between expansions in I/O dormancy (three spots are featured) and a decrease

in the DBMS's performance. For this situation, the design was steady in light of the fact

that the calculation had joined at this phase of the tuning meeting. Accordingly, almost

 ISSN: 2320-0294Impact Factor: 6.765

80 International Journal of Engineering, Science and Mathematics

http://www.ijmra.us, Email: editorijmie@gmail.com

certainly, outside factors autonomous of the DBMS are to be faulted for these idleness

spikes.

Table 2:Portrayal Runtime estimations of DBMS performance with computer chip use and

I/O dormancy. Impact of I/O Dormancy Spikes.

DB Times(s) Tunning iterations

2.3 3.2

3.6 3.9

4.2 5.2

5.3 6.2

4.6 5.9

6.2 7.1

7.3 8.2

Figure 4: Portrayal Runtime estimations of DBMS performance with computer chip use

and I/O dormancy. Impact of I/O Dormancy Spikes.

Because of these motions, hard to analyze tuning meetings happen on a few virtual

machines (VMs) or even on a similar VM however at different times. Considering this, we

put a ton of exertion into planning our investigations with the goal that we could give

sagacious outcomes. In this work, we direct each of our tests utilizing a similar procedure.

The length of each tuning meeting is 150 emphasess. Contingent upon how well the

DBMS is arranged, every emphasis can require as long as 60 minutes. Therefore, it

required three to five days to complete every meeting.

2.3

3.6
4.2

5.3
4.6

6.2

7.3

3.2
3.9

5.2

6.2 5.9

7.1

8.2

1 2 3 4 5 6 7

Chart Title

DB Times(s) Tunning iterations

 ISSN: 2320-0294Impact Factor: 6.765

81 International Journal of Engineering, Science and Mathematics

http://www.ijmra.us, Email: editorijmie@gmail.com

We perform three tuning meetings for every calculation in a specific trial for each

condition being tried. Following that, we assemble the advanced arrangements from every

one of the meetings and execute them multiple times each, one after the other, on three

particular virtual machines (VMs). All in all, we run every arrangement multiple times for

each VM, for a sum of nine runs. Because of the way that a VM's performance changes

with time, running the settings all together inside a similar time period is significant. It

likewise empowers us to decide the overall enhancements between them involving the

indistinguishable DB Time estimation for the SG default arrangement. By running the

designs on three free VMs, one VM's unnecessary commotion is forestalled.

5.2 Tuning Knobs Selected by DBA

In this underlying examination, the nature of the setups that the tuning calculations produce

as they tune more handles is surveyed. Notwithstanding the way that Prophet uncovered

more than 400 handles, we just permit a sum of 40 handles to be changed for two reasons.

To start with, we need to look at the amount more really ML calculations request handle

significance than a DBA-chose positioning.

It is ludicrous to anticipate that a human should pick between in excess of 40 tuning

handles, and the outcomes will be whimsical. The subsequent explanation is to abbreviate

the time expected for the calculations to join in light of the fact that the trouble of tuning

calculations increments with the quantity of handles. Since the TicketTracker

responsibility emphasizes once at regular intervals, it can require a long time for the

models to merge. We consequently consider a limit of 40 handles that the DBA picked and

requested relying upon their expected impact on the performance of the DBMS.

Table 3:The three most crucial dials for the ticket Tracker workload are listed below,

together with the best observed and default values for each.

DB_CACHE_SIZE 5 GB 30-40 GB

DB_32K_CACHE_SIZE 11 GB 20 GB

OPTIMIZER_FEATURES_ENABLE v11.2.0.4 v12.2.0.1

The ML-based calculations don't involve information from prior tuning meetings for this

arrangement of investigations. All things considered, we utilize 10 LHS-created

arrangements to bootstrap their models.

While streamlining 10, 20, and 40 handles by VM, the best (i.e., most noteworthy

performing) of three designs created per calculation shows the improvement in DB Time

over the SG default setup in Figure 10. Albeit the outright measures contrast, the positions

of the calculations' overall performance are something similar across all of the VMs.

 ISSN: 2320-0294Impact Factor: 6.765

82 International Journal of Engineering, Science and Mathematics

http://www.ijmra.us, Email: editorijmie@gmail.com

Figure 11 presentations, for the advanced arrangements created by the strategies, the

typical performance improvement over the three VMs. Each bar's dim and light regions

compare to the calculation's base and best performance, separately.

We physically went through every setup to decide the three Prophet handles that have the

greatest impacts when the calculations don't precisely design them to comprehend the

reason why the arrangements act in an unexpected way. Table 2 records the upsides of the

handles in the SG default design as well as the best value(s) we had the option to see all

through our tests.

The initial two direct the size of the essential cradle stores in DBMSs.

The DBMS utilizes 8 KB cradles for common table information in one of these reserves

and 32 KB supports for Throw information in the other. The third handle, an unmitigated

variable with seven potential qualities, enacts enhancer usefulness in view of a Prophet

discharge.

Table 4:The performance improvement of the best setup for every calculation running on

particular VMs in contrast with the performance of the SG default design estimated toward

the beginning of the tuning meeting.

Knobs % Improvement (DB Time)

GPR 2.3

DNN 3.3

DDPG 4.2

DDPF++ 4.9

LHS 5.3

Figure 5: The performance improvement of the best setup for every calculation running on

particular VMs in contrast with the performance of the SG default design estimated toward

the beginning of the tuning meeting.

2.3

3.3

4.2

4.9
5.3

GPR DNN DDPG DDPF++ LHS

Improvement (DB Time)

 ISSN: 2320-0294Impact Factor: 6.765

83 International Journal of Engineering, Science and Mathematics

http://www.ijmra.us, Email: editorijmie@gmail.com

Be that as it may, GPR is inclined to becoming caught in neighborhood minima, and when

it combines, it quits investigating and thus doesn't keep on progressing. The best noticed

scopes of the affecting handles from Table 2 should be investigated for GPR to work at its

ideal. We likewise notice that the underlying examples run toward the start of the tuning

meeting affect its performance.

6. CONCLUSION

In this review, involving a genuine responsibility on a Prophet establishment in a venture

setting, we completely assessed AI based DBMS handle tuning methods. To analyze three

state of the art ML calculations one next to the other, we conveyed them in the Otter Tune

tuning administration. Our discoveries showed the way that these calculations could give

handle mixes that beat those made by a human master by up to 45%, yet the performance

was impacted by the quantity of tuning handles and the contribution of human specialists

in the handle determination process. Predictive displaying has turned into a helpful device

for database management frameworks (DBMS) to deal with the issues of effectively

overseeing large information volumes and refined questions. Predictive models can exactly

estimate query performance and direct improvements endeavors by using past information

and applying factual and AI calculations.

Predictive displaying helps database managers (DBAs) to detect potential bottlenecks and

shortcomings in the DBMS framework before they become tricky through proactive

performance tweaking. Predictive models can help DBAs in arriving at all around

informed conclusions about framework arrangement, query advancements strategies, and

asset assignment by looking at past information and seeing examples and connections.

REFRENCES

1. Behm, "Predicting performance through machine learning," Proceedings of the 2013

IEEE 29th International Conference on Data Engineering, pp. 2-7, 2013.

2. Gupta, I. Singh, and A. Sivasubramaniam, "Predictive modeling for query performance

in parallel database systems," Proceedings of the 2003 ACM SIGMOD International

Conference on Management of Data, pp. 605-606, 2003.

3. H. Baeza-Yates, C. Hurtado, M. Mendoza, P. Mora, and P. Vassiliadis, "Predictive

modeling for self-tuning database systems," ACM Transactions on Database Systems

(TODS), vol. 31, no. 3, pp. 1055-1082, 2006.

4. James Bergstra and Yoshua Bengio. 2012. Random Search for Hyper-Parameter

Optimization. Journal of Machine Learning Research 13, 10 (2012), 281–305.

 ISSN: 2320-0294Impact Factor: 6.765

84 International Journal of Engineering, Science and Mathematics

http://www.ijmra.us, Email: editorijmie@gmail.com

5. Leo Breiman, Jerome Friedman, Charles J. Stone, and Richard A. Olshen. 1984.

Classification and Regression Trees. CRC press.

6. P. Gao, Y. Chen, and J. Xu, "A machine learning approach to database query

performance prediction," Proceedings of the 2011 IEEE 27th International Conference

on Data Engineering, pp. 1060-1071, 2011.

7. P. Ipeirotis, E. Jeng, H. Wang, and J. Michael, "Query workload-driven database

design," Proceedings of the 25th International Conference on Data Engineering, pp.

864-875, 2009.

8. R. T. Snodgrass, "Database tuning: principles, experiments, and troubleshooting

techniques," Morgan Kaufmann, 2002

9. S. Chaudhuri, "An overview of query optimization in relational systems," Proceedings

of the 21st International Conference on Data Engineering, pp. 34-45, 2005.

10. S. D. Viglas, "Selectivity estimation through adaptive sampling," Proceedings of the

26th International Conference on Very Large Data Bases, pp. 346-357, 2000.

11. S. F. Wong and T. K. Leung, "Predictive modeling for query performance in distributed

database systems using neural networks," Journal of Parallel and Distributed

Computing, vol. 62, no. 6, pp. 996-1013, 2002.

12. Sanjay Agrawal, Vivek Narasayya, and Beverly Yang. 2004. Integrating Vertical and

Horizontal Partitioning into Automated Physical Database Design. In Proceedings of

the 2004 ACM SIGMOD International Conference on Management of Data. 359–370.

13. Surajit Chaudhuri and Vivek Narasayya. 1998. AutoAdmin “What-If” Index Analysis

Utility. In Proceedings of the 1998 ACM SIGMOD International Conference on

Management of Data. 367–378.

14. Surajit Chaudhuri and Vivek Narasayya. 2007. Self-Tuning Database Systems: A

Decade of Progress. In Proceedings of the 33rd International Conference on Very

Large Data Bases. 3–14.

15. Witkowski, P. Morvan, and S. Uhrig, "Machine learning for predictive performance

modeling of database systems," Proceedings of the 2009 International Conference on

Machine Learning and Applications, pp. 353-358, 2009.

