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ABSTRACT  

The numerical study of this problem focuses on how waves go through a distensible tube 

that is filled with a viscous fluid. The most important use is in biofluid mechanics, which 

places a significant emphasis on the interaction between fluids and solids. A quasi-1D 

differential model was used to represent the data since it was assumed that pressure waves 

would have a long wavelength and a modest amplitude. The model took into consideration 

the viscoelastic properties of the the vessel wall showed deformations along both the radial 

and axial axes. The nonlinear problem was solved using a finite difference method on a 

staggered grid. The response was provided without the use of any dimensions. The 

boundary conditions took into consideration both persistent oscillations caused by a 

periodic pushing pressure and spontaneous oscillations in a deformable tube fixed at the 

ends. Natural frequency (denoted by the symbol S t) was found to be independent of 

viscosity and to approach equality with the square root of the elasticity coefficient. It has 

been shown that the damping time is inversely proportional to the wall viscosity 

coefficient, and that the viscosity of the fluid provides an even bigger damping factor. An 

important factor in these findings. 
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INTRODUCTION  

Viscous fluid flows in elastic tubes are well understood prevalent in various applications, 

such as modeling blood flow difficulties. One such use is the simulation of blood flow. 

Experiments have shown that when an uneven force disturbs a continuous flow in a tube 

that can expand and contract, which results in the creation of waves that go in the opposite 

direction. These waves were generated when there was a disruption in the flow. In spite of 

the fact that a number of hypotheses have been put forward to explain this phenomenon, 

the mechanism behind its spread is not yet completely understood. This is as a result of the 

complicated nature of the system as well as the nonlinear interaction between the fluid and 

the structure. Some of the most fundamental aspects of the damping effect can be 

understood with a reasonable amount of effort, and simpler models can provide some 

insightful clues about the behaviour of wave transmission. As a consequence of this, we 

are able to carry out an exhaustive investigation over a wide variety of dimensions. 
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Although multi-dimensional models provide a better description of physiological flows, 

simpler models provide some valuable information on the wave propagation. In point of 

fact, the unidirectional character of blood flow motivates the effort to apply the 

approximation to lengthy arterial conduits because of how accurate it is likely to be. In 

attempt to get some understanding of the mechanical contact that occurs between the blood 

and the arterial wall, a number of different investigations have been conducted on the 

process of pulse propagation in arteries. A significant portion of these models concentrate 

on an incompressible Newtonian fluid that is encased in a tube that is compliant. In 

addition to this, the majority rely on linearized equations of motion and stress-strain ratios 

in your analysis. 

It is common knowledge that such linear models lead the propagating pulses to take on 

flow patterns resembling shock waves, which are not seen under physiological conditions. 

The reason for this is that the models wrongly assume that the vessel wall is completely 

elastic, despite the fact that this is not the case. Blood vessel walls, on the other hand, have 

been found to be nonlinear, viscoelastic, and anisotropic by a number of different writers. 

If an appropriate mathematical model that takes into account the viscoelastic features of 

the wall is added into the one-dimensional theory, then it is possible to generalise the 

theory to further contexts. The damping that is produced as a result of viscoelasticity helps 

to prevent the high peaks of pressure and flow pulses and also helps to smooth out the 

rapid ascent of wave fronts. Both of these effects are due to viscoelasticity. When 

compared to the findings of experiments, the predictions that these models produce are 

consequently more accurate. The vast majority of these articles, on the other hand, model 

artery wall distensibility by making use of nonlinear algebraic relationships between tube 

cross section and transmural pressure. Sometimes it is feasible to integrate along the 

characteristics while the wave rapidity is expressed openly, and these relations sometimes 

are a function of the frequency. Sometimes it is possible to integrate along the 

characteristics while the wave rapidity is represented clearly. In contrast to this method, 

which is devoid of any true mechanical explanation, many constitutive strainstress 

equations have been developed in order to define the mechanical properties of the artery 

wall. Recent research has focused on analysing two-dimensional flow inside of a rigid 

channel using a flexible viscoelastic membrane in place of a portion of the wall. This 

article demonstrates that a similar but simpler one-dimensional model is sufficient for 

characterising propagative processes, and it does so by demonstrating the model's 

applicability to the problem.  

In this section, we address the importance that the vessel's constitutive equation plays in 

arterial flow difficulties, as well as the wall-fluid interaction, which contains a viscoelastic 

factor, are both investigated in this study. The potential to comprehend the development of 

minor flow disruptions caused either by the insertion of a local vessel or by a diseased 

condition is what prompted this research in the first place. The investigation of models has 

shown to be quite helpful in shedding light on the process involved, as well as the changes 

to the pulse propagation. The quasi flow equations paired with the massless membrane 

equilibrium equation provide the foundation of the model that is used. In addition to this, a 
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We offer a strain-stress constitutive equation for the wall that allows for bending in both 

the radial and longitudinal axes. Even though inertia is the principal factor responsible for 

blood flow in large arteries, circumstances involving very tiny Reynolds number limits as 

well as very large Reynolds number limits are also taken into account. This is done in 

order to have a better understanding of the dissipative mechanism that is caused by viscous 

friction. This mechanism is responsible for producing damped waves as the system gets 

closer to its steady state and is an essential component of the process. The crucial 

parameters that are responsible for the probable numerical instability are highlighted 

below. These factors are involved in the mechanics. 

OBJEACTIVES  

1. The Study Visco Flows with A Reference to Elastic Fluid in Tubes. 

2. The Study Many practical situations involve the flow of viscous fluids through 

flexible tubes. 

RESEARCH METHODOLOGY  

We look at the flow of an incompressible viscoelastic fluid that is axi-symmetric through a 

circular cylindrical diverging tube. It is possible to provide the governing equations for a 

viscoelastic fluid which is characterized by the Maxwell model. 

 

where tm is the relaxation time, t is the time parameter, u and w are radial and axial 

velocities, r and z are radial and axial coordinates, and are the density and kinematic 

viscosity of the fluid, and p is the pressure. In addition, r and z are the radial and axial 

coordinates. The fluid's density and kinematic viscosity are found in the fluid. It is 

anticipated that the following series of gradually decreasing contraction waves have a tiny 

amplitude and will travel down the wall of the tube: 

 

where H represents the wall displacement, a(z) represents the radius of the tube, b 

represents the amplitude of the wave, represents the wavelength, and c represents the 

wave's velocity. Although Eq. (4) allows for expansion and contraction of the wall, it does 

not allow the wall to move beyond its natural boundaries. This is consistent with the wall 

motion seen in physiological ducts. 

where the particular solution is 
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and the constants A1 and B1 are given b 

 

. The solution of (48) may be writte 

 

Where  

 

DATA ANALYSIS  

The analysis was carried out to explore the effects of relaxation time, the tapering of the 

tube, and Reynolds number, which is commonly disregarded when studying creeping flows 

when the fluid in issue possesses a viscoelastic property and the flow pattern is what it is. 

flows when the viscoelastic property is present. The purpose of this was to get insight into 

the changes that occur to the flow pattern when a viscoelastic fluid is present. 

Measurements of the vas deferens are carried out so that we can determine whether or not 

the parameters utilised in the analysis are appropriate. Because of this, we are able to 

extrapolate the theoretical model to the flow of the vas deferens. The evidence that was 

presented by Guha et al. indicated that the rhesus monkey possesses the following 

characteristics: When k0 equals zero, a flow that is totally peristaltic occurs, and this state 

of affairs is referred to as free pumping. Take the gradient of the tube to be K, where K is 

the radius of the tube, and let the gradient be represented by the parameter.  
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When the amplitude ratio is shown against the average flow rate that is calculated We find 

that the flow rate decreases with increasing tm values by utilising a range of low Reynolds 

numbers for various values of the temporal relaxation parameter tm. This enables us to 

draw this conclusion. The long wave approximation approach can be used to produce 

graphs that look quite similar to each other and demonstrate findings that are very similar. 

Whether p is positive, indicating an unfavourable pressure differential, or negative, 

suggesting a beneficial pressure difference, the discoveries are the same. The only 

difference that can be seen is that the minimum flow rate is determined by the pressure 

differential that is imposed at both ends of the tube. This is the only difference that can be 

seen. It should come as no surprise that favorable and unfavorable pressure differences 

result in flow rates that are positive and negative, respectively. 5a and 5b show the 

influence that the time relaxation tm has on the axial velocity as it travels over the radial 

distance. It has been noticed that there is a decrease in the axial velocity if tm is increased. 

On the other hand, one should keep in mind that tm is only useful for very big numbers. is 

predicated on the idea that the Reynolds number is relatively low, while is founded on the 

concept of approximating long waves. 

 

Fig. 1. For various amounts of relaxation time, the diagram shows how the average 

flux rate depends on the amplitude ratio. 

 

Fig. 2 The diagram that follows demonstrates, for a range of different amounts of 

relaxation time, how the average flux rate is dependent on the amplitude ratio. 

There is a linear connection between the two variables, the pressure differential and the 

mean flow rate. Between the two variables. When the Reynolds number is increased, there 

is a significant rise in the flow rate; however, when the time relaxation parameter is 
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increased, there is a decrease in the flow rate for a constant pressure difference. When tm is 

increased from 0 to 100, there is a possibility of observing a change; however, this is not 

the case when it is increased to 1000. It is possible to draw the conclusion from this that, 

assuming all other conditions remain the same, the flow rate of a viscoelastic fluid will be 

lower than the flow rate of a Newtonian fluid. By generating graphs that show the 

relationship between the radial distance and the velocity, we are able to investigate the 

effect that the Reynolds number has on the axial velocity. When the pressure gradient, the 

wave number, the degree of tapering, and the relaxation time are all held constant, it has 

been proved that increasing the Reynolds number results in a considerable rise in the axial 

velocity. Additionally, it has been shown that the Reynolds number has a significant 

impact on the pressure profile that runs along the tube. Assuming that the wave number, 

the degree of tapering, and the flow velocity are all kept the same, Figure 3 illustrates a 

negative relationship between the Reynolds number and the pressure differential. This 

unequivocally illustrates that the amount of pumping effort that is necessary to move a 

particular volume of fluid is directly related to the viscosity of the fluid. 

 

Fig. 3. Based on, This Diagram Displays Pressure Distribution Along Axial Distance 

For Various Reynolds Number R 

 

Fig. 4. Diagram Based On Demonstrates How Pressure Changes With Time 

Relaxation Tm Along The Tube's Length For Q¯ = 4.421, L = 1666.67. 
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Since seminal fluid is a viscoelastic fluid, one can reason, based on what has been 

discussed up to this point, that the peristaltic contribution to its flow in the vas culi of 

rhesus monkeys is slightly less than what Misra and Pandey postulated it to be. This 

conclusion is supported by the fact that seminal fluid is a viscous fluid came to the 

conclusion of under a comparable set of conditions. This is the conclusion that was reached 

by Misra and Pandey. 

CONCLUSION  

A coupled wall-fluid model has been provided, with application in the study of the 

irregular motion of a viscous liquid in a viscoelastic tube. This model was developed for 

the purpose of researching arterial flows. Due to the unidirectional character of blood flow, 

it is recommended that The observations provide considerable credence to a quasi-

mathematical approximation that may be put to use in order to symbolise the waves of 

flow that are being sent. However, if the wavelength is sufficiently large and the wave 

amplitude is small in comparison to the mean radius of the tube, then the findings that this 

method produces may be reasonable. There is a presentation of an article that makes a 

proposition regarding a linear constitutive relation for the vessel wall. This relation is 

sensitive to both strain and strain rate. This model takes into account the interaction that 

occurs between the viscosity of the blood and the viscoelasticity of the solid tube. In a 

purely elastic wall model, the job of the viscosity parameter is to counteract any instability 

events and dampen the high-frequency oscillations that are present. Additionally, the 

viscosity parameter's role is to attenuate oscillations at lower frequencies. The influence of 

the elasticity parameter has a direct proportional relationship with the frequency of 

transient oscillations. The model research that has been presented in this article is capable 

of describing the fundamental physical process of pulse propagation via the nonlinear 

interaction that takes place between the fluid and the wall, despite the fact that the 

evaluation of the theory requires specific assumptions that simplify the situation in order to 

proceed. The determination of the numerical value of the elastic and viscous coefficients 

that occur in the constitutive equation as well as the boundary conditions requires a 

comparison of the numerical results with the experimental data observations. This may be 

done by following the steps outlined in the following paragraph. 
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