International Journal of Engineering, Science and Mathematics

Vol. 12 Issue 3, March 2023,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

RESULTS ON CONGRUENCE RELATION OF A LATTICE

Dr. K.V. R.Srinivas

Professor of Mathematics, GIET Engineering College, Rajahmundry

	ABSTRACT
KEYWORDS:	In this paper we defined a relation on a lattice and it is observed that the relation is a congruence relation on a lattice. Mainly we have obtained sufficient conditions for a lattice to be reflexive and transitive
Groundnut seeds; Extraction; : congruence relation, convex sublattice	Copyright © 2023 International Journals of Multidisciplinary Research Academy. All rights reserved.

1. INTRODUCTION In this paper we defined a relation on a lattice and it is observed that the relation is a congruence relation on a lattice. It is observed in Result1 that If ' θ ' is an equivalence relation as well as a parital order relation on X then $\theta(x) = \Delta_x = \{(x,x)/x \in X\}$. it is also observed that the relation is reflexive iff $\Delta_x = \{(x,x)/x \in X\} \subseteq \theta$ which is observed in Result2. It is also observed in this paper that the relation θ on a set X is symmetric iff $\theta \subseteq \theta^{-1}$. It is also observed in this paper that if θ is a congruence relation on L then [a] θ is a convex sublattice of L. It is also observed in this paper that A reflexive binary relation θ on a lattice 'L' is a congruence relation iff it satisfies properties. Mainly we have obtained sufficient conditions for a lattice to be reflexive and transitive.

Keywords: congruence relation, convex sublattice

Def 1:- A Relation ' θ ' on a lattice 'L' is called an equivalence relation if it satisfy the following.

- 1. Reflexive:- $a \equiv a(\theta) \forall a \in L$
- 2. Symmetric:- if $a = b(\theta)$ a,b $\in L$ then $b = a(\theta)$
- 3. Transitive:- if $a = b(\theta)$ and $b = c(\theta)$ then if $a = c(\theta)$

An equivalence relation θ on a lattice 'L' is called a congruence relation if for any a_0,a_1,b_0,b_1 , $a\in L$ with $a_0\equiv a_1$ (θ) and $b_0\equiv b_1$ (θ)then $a_{0\wedge}$ $b_0\equiv a_{1\wedge}$ b_1 (θ)

Example 1:- 1.Let 'L' be a lattice for all a, $b \in L$ define \equiv on 'L' by $a \equiv b(\theta)$ iff a = b then θ is a congruence relation.

Reflexive:- $a \equiv a(\theta)$ as a=a. for all $a \in L$

Symmetric: Suppose $a = b(\theta)$ iff a = b iff b = a imply that $b = a(\theta)$

Transitive :- Suppose $a \equiv b(\theta)$ and $b \equiv c(\theta)$ then a = b and b = c imply that a = c and hence $a \equiv c(\theta)$.

Compatibility- Let $a_0 \equiv a_1 \ (\theta)$ and $b_0 \equiv b_1 (\theta)$ then $a_0 = a_1$ and $b_0 = b_1$ then

 $a_{0\wedge}$ $b_0=a_{1\wedge}$ b_1 (θ) and $a_{0\vee}$ $b_0=a_{1\vee}$ b_1 (θ) imply that $a_{0\wedge}$ $b_0=a_{1\wedge}$ b_1 (θ) and $a_{0\vee}$ $b_0=a_{1\vee}$ b_1 (θ)

Example 2:- suppose 'L' is a lattice. Define a relation ' \equiv ' on 'L' by $a\equiv b(\theta)$ iff either a< b then ' θ ' in a congruence relation on 'L'

Def 2:- suppose 'L' is a lattice and $a \in L$, then the set of all congruence class of the element 'a' is denoted as $[\tilde{a}] \theta = \{x \in L / x \equiv a(\theta)\}$

Example 3:- If (a,.) is a group and (H,.) is a subgroup of the group (G,.),

define \equiv on H by $a\equiv a \ b \pmod{H}$ iff $b^{-1}a\in H \ \forall \ a,b\in G$ the relation \equiv on H is a congruence relation.

Def 3:- If 'X' is a non- empty set and $x \in X$ then define a relation Δ on 'X' by $\Delta_x = \{(x,x)/x \in X\}.$

It is to be observed that when the relation θ and Δ_x coincides which is obtained the same in the following result.

Result1:- If ' θ ' is an equivalence relation as well as a parital order relation on X then θ (x) = $\Delta_x = \{(x,x)/x \in X\}$

Proof:- we have $[x] \theta = \{y \in X/(x,y) \in \theta\}$ let $(x,y) \in \theta$ iff $(y,x) \in \theta$ iff $(x,x) \in \Delta$ and hence $\theta = \Delta$.

Result2:- A relation θ on a set 'X' is reflexive iff $\Delta_x = \{(x,x)/x \in X\} \subseteq \theta$

Proof:- Let ' θ ' be a reflexive relation on set X then clearly $\Delta \subseteq \theta$

Conversely let $\Delta \subseteq \theta$ We have $\Delta_x = \{(x,x)/x \in X\}$ which is a reflexive relation on X;

We have $\theta[x] = \{y \in X/(x, y) \in \theta\}_{=\{x \in X/(x, x) \in \theta\}}$ and hence θ is reflexive.

Result3: - A relation θ on a set X is symmetric iff $\theta \subseteq \theta^{-1}$

Proof: - Let ' θ ' be a symmetric relation on a set 'X'

Now we claim that $\theta \subset \theta^{-1}$

let $(x,y) \in \theta$ imply that $(y,x) \in \theta$ as θ is symmetric so that $(y,x) \in \theta^{-1}$ and hence $\theta \subseteq \theta^{-1}$. Conversely let $\theta \subseteq \theta^{-1}$ and let $(x,y) \in \theta$ imply that $(x,y) \in \theta^{-1}$ And hence $(y,x) \in \theta$ so that θ is symmetric.

For any relation θ , $\theta \subseteq \theta^{-1}$ iff $\theta = \theta^{-1}$

Result4: - A relation θ on a set 'X' is a transitive relation on X iff $\theta 0\theta \subset \theta$.

Proof: -let θ be a transitive relation on a set X.

let $(x,y) \in \theta$ and $(y,z) \in \theta$ imply that $=>(x,z) \in \theta$

But for $(x,y) \in \theta$ and $(y,z) \in \theta$

 $=>(x,z) \in \theta_0 \theta$ and Hence $\theta_0 \theta \subset \theta$.

Conversely let θ ' be any relation on 'X' such that $\theta_0 \theta \subseteq \theta$.

Now we claim that θ is transitive relation.

let $(x,z) \in \theta_0\theta$ imply that there exists $y \in X$ such that $(x,y) \in \theta$ and $(y,z) \in \theta$ and hence is a transitive relation on X

Result5:- If θ and \varnothing are reflexive relations on x then $\theta \subseteq \theta 0 \varnothing$ and $\varnothing \subseteq \theta 0 \varnothing$

Where $\theta(x) = \{y \in x/(x,y) \in \theta\}$ and $\emptyset(x) = \{z \in x/(x,z) \in \emptyset\}$

Proof:- we have $\theta(x) = \{y \in x/(x,y) \in \theta\}$ and $\emptyset(x) = \{z \in x/(x,z) \in \emptyset\}$

Since θ and \varnothing are reflexive, $(x,y) \in \theta \Rightarrow (x,x) \in \varnothing$, $(x,x) \in \theta$ so that $(x,x) \in \theta \otimes \varnothing$ and hence $\theta \subseteq \theta \otimes \varnothing$. Let $(x,x) \in \varnothing \Rightarrow (x,x) \in \theta$ so that $\varnothing \subseteq \theta \otimes \varnothing$.

Result 6:- If θ is a congruence relation on L.Then [a] θ is a convex sublattice of L.

Proof :- we have [a] $\theta = \{X \in L/(x,a) \in \theta\}$.

Since θ is reflexive, for any $a \in L$, $(a,a) \in \theta$

 $=>a\in[a]\ \theta$ and hence $[a]\ \theta\neq\emptyset$.

Now we show that θ is a sublattice of L.

i.e.. θ is closed under meet and join operations.

Let $x,y \in [a] \theta$, Now we have to show that $x \land y$, $x \lor y \in [a] \theta$

Since $x \in [a] \theta \Rightarrow (x,a) \in \theta$ and $(y,a) \in \theta$

 $=>(x \land a, a \land a) \in \theta \text{ so that } x \land y \in [a] \theta$

Since $(x,a) \in \theta$ and $(y,a) \in \theta \Rightarrow (x \lor y,a) \in \theta \lor \theta = \theta$

So that $x \lor y \in [a] \theta$ Hence θ is closed under join &meet operation.

Now we have to verify the convex property.

Let $x,y \in [a] \theta$ with $x \le t \le y =>(x,a) \in \theta$ and $(y,a) \in \theta$

Now we claim that $t \in [a]\theta$ i.e. $(t,a) \in \theta$

Since $(a,x) \in \theta$, $(t,t) \in \theta \Rightarrow (a \land t, x \land t) \in \theta$

 $=> (a \land t, x) \in \theta \text{ as } x \le t....(1)$

Since $(y,a) \in \theta$, $(t,t) \in \theta \Longrightarrow (y \land t, a \land t) \in \theta$ so that $(y, a \land t) \in \theta$(2)

From (1) and (2) $(a \land t, x) \in \theta$ and $(t, a \land t) \in \theta$ imply that $(x, a \land t) \in \theta$. Since $(a \land t) \in \theta$.

 \land t, t) \in 0 so that $(x,t) \in$ 0, $(a,x) \in$ 0=> $(a,t) \in$ 0 and hence $t \in$ [a]0 and [a] 0 is a convex sublattice of L

.

Theorm7: A reflexive binary relation θ on a lattice 'L' is a congruence relation iff the following three properties hold.

for any $x,y,z,t \in L$,

- 1) $x \equiv y(\theta)$ iff $x \land y \equiv x \lor y(\theta)$
- 2) $x \le y \le z$ and $x \equiv y(\theta)$, $y \equiv z(\theta)$ imply that $x \equiv z(\theta)$.
- 3) If $x \le y$ and $x \equiv y(\theta)$ then $x \land t \equiv y \land t(\theta)$

Proof :- Let θ be a congruence relation on 'L'.

1) Assume $x \equiv y(\theta) => (x,y) \in \theta$. So that $y \in \theta[x]$ for $x \in \theta[x] => (x \land y, x \lor y) \in \theta$ as θ Satisfy Substitution Property imply that $x \land y \equiv x \lor y(\theta)$.

Conversely let $x \land y \equiv x \lor y(\theta) = >(x \land y, x \lor y) \in \theta = > x \land y \in \theta[x \lor y]$ and $x \lor y \in \theta[x \land y]$

Since $x \land y \le x \le x \lor y => x \in \theta[x \land y]$

And also $x \land y \le y \le x \lor y => y \in \theta[x \land y]$ and hence $(x,y) \in \theta$ so that $x \equiv y(\theta)$.

- 2) Let $x \le y \le z$ and $x = y(\theta)$ and $y = z(\theta)$ implies that $(x,y) \in \theta$ and $(y,z) \in \theta$ so that $(x,z) \in \theta_0 \theta \subseteq \theta$ so that $(x,z) \in \theta$ imply that $x = z(\theta)$.
- 3) If $x \le y$, $x \equiv y(\theta)$ then $x \land t \equiv y \land t(\theta)$ and $x \lor t \equiv y \lor t(\theta)$

As $x \equiv y(\theta)$, $(x,y) \in \theta$, $t \equiv t(\theta) = >(t,t) \in \theta$ so that $(x \land t, y \land t) \in (\theta)$ imply that $x \land t \equiv y \land t(\theta)$ and $(x \lor t, y \lor t) \in (\theta)$ imply that $x \lor t \equiv y \lor t(\theta)$

Conversely let θ be any relation on L satisfy the three conditions of hypothesis θ is a congruence relation on L.

- 1) Clearly $(x,x) \in \theta \ \forall \ x \in L \ as \ x \land x \equiv x \lor x \ (\theta)$
- 2) For $(x,y) \in \theta = > x \equiv y$ so that $x \land y \equiv x \lor y(\theta)$ and $y \land x \equiv y \lor x(\theta)$ imply that $y \equiv x(\theta)$ and hence $(y,x) \in \theta$ imply that θ is symmetric.
- 3)Let $(x,y) \in \theta$ and $(y,z) \in \theta$ then it is easy to observe that $(x,z) \in \theta$ imply that θ is transitive.
- 4) For $(x,y) \in \theta$ and for any $t \in L$ $(x \land t, y \land t) \in (\theta)$ and $(x \lor t, y \lor t) \in (\theta)$ imply that θ satisfy substitution property and hence θ is a congruence relation on L.

References:

General Lattice theory by Gabor SAZAZ Clarendron press, Newyork.