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  ABSTRACT  

 
 

In this paper, we define a new concept, called soft intersection action 

(SI) on M- N module structures on a  soft set. This new notions 

gathers  soft set theory and near-ring modulo theory together and it 

shows how a  soft set effects on M- N module structure in the mean 

of union and inclusion of sets. We then obtain its basic properties 

with illustrative examples and derive some analog of classical M-N 

module theoretic concepts for SI-action on M-N-module. Finally , we 

give the application of SI-actions on M-N module theory. 
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Introduction: Soft set theory was introduced in 1999 by Molodtsov [22] for dealing with uncertainties 

and it has gone through remarkably rapid strides in the mean of algebraic structures as in [1, 2, 11, 14, 15, 16, 

18, 25, 28]. Moreover, Atagun and Sezgin [4] defined the concepts of soft subrings and ideals of a ring, soft 

subfields of a field and soft submodules of a module and studied their related properties with respect to soft 

set operations. Operations of soft sets have been studied by some authors, too. Maji et al. [19] presented some 

definitions on soft sets and based on the analysis of several operations on soft sets Ali et al. [3] introduced 

several operations of soft sets and Sezgin and Atagun [26] studied on soft set operations as well. 

Furthermore, soft set relations and functions [5] and soft mappings [21] with many related concepts were 

discussed. The theory of soft set has also a wide-ranging applications especially in soft decision making as in 

the following studies: [6, 7, 23, 29]. In this paper, we define a new concept, called soft intersection action 

(SI) on M-N module structures on a fuzzy soft set. This new notions gathers fuzzy theory, soft set theory and 

near-ring modulo theory  together and it shows how a soft set effects on M-N module structure in the mean of 

union and inclusion of sets. We then obtain its basic properties with illustrative examples and derive some 

analog of classical M-N module theoretic concepts for SI-action on M-N module. Finally, we give the 

application of SI-actions on M-N module 

2.Preliminaries: In this section, we recall some basic notions relevant to near-ring modules. By a near-ring, 

we shall mean an algebraic system (N,+,.), 
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where  

 (N1)(N, +) forms a group (not necessarily abelian) 

 (N2) (N, .) forms a semi group and 

 (N3) (x + y)z = xz + yz for all x,y,z ∈ N. (that is we study on right near-ring modules) 

 Throughout this paper, N will always denote right near-ring. A normal subgroup H of N is called a 

left ideal of N if n(s+h)-ns ∈ H for all n,s ∈ N and h ∈ I and denoted by H⊲ℓN. For a near-ring N, the zero-

symmetric part of N denoted by N0 is defined by N0={n∈ S / n0=0}. 

Let (S,+) be a group and A: N×S →S, (n,s)→s. 

(S,A) is called N module or near-ring module if for all x,y ∈ N,for all s ∈ S. 

 (i) x(ys) = (xy)s 

            (ii) (x+y)s = xs+ys. It is denoted by 𝑁𝑆. Clearly N itself is an N module by natural operations. A 

subgroup T of 𝑁𝑆 with NT⊆T is said to be N-sub module of S and denoted by  

T≤𝑁S. A normal subgroup T of S is called an N-ideal of 𝑁𝑆 and denoted by a near-ring, S and χ two N-

modules. Then h: S→χ is called an M-N-homomorphism if s,𝛿 ∈ S, for all n∈ N, 

 (i) h(m(s+𝛿)) = h(s)+h(𝛿) and 

 (ii) h(ns) = nh(s). 

For all undefined concepts and notions we refer to (24). From now on, U refers to on initial universe, E is a 

set of parameters P(U) is the power set of U and A,B,C⊆ E. 

2.1.Definition[22]: A pair (F,A) is called a soft set over U, where F is a mapping given by                   F : 

A→P(U). 

2.2.Definition[6] :The relative complement of the soft set FA over U is denoted by F
r
A, where 

 F
r
A: A → P(U) is a mapping given as F

r
A(a) =U \FA(a), for all a ∈A. 

2.3.Definition[6]: Let FA and GB be two soft sets over U such that A∩B ≠ ∅,. The restricted intersection of 

FA and GB is denoted by FA⋓GB, and is defined as FA⋓GB =(H,C), where  

C = A∩B and for all c ∈C, H(c) = F(c)∩G(c). 

2.4.Definition[6]: Let FA and GB be two soft sets over U such that A∩B ≠ ∅,. The restricted union of FA and 

GB is denoted by FA∪RGB, and is defined as FA∪RGB = (H,C),where C = A∩B and for all c ∈C, H(c) = 

F(c)∪G(c). 

2.5Definition[12]: Let FA and GB be soft sets over the common universe U and 𝜓be a function from A to B. 

Then we can define the soft set 𝜓(FA) over U, where𝜓 (FA) : B→P(U) is a set valued function defined by𝜓 

(FA)(b) =∪{F(a) | a ∈A and𝜓 (a) = b},  

if𝜓−1
(b) ≠ ∅,  = 0otherwise for all b ∈B. Here, 𝜓 (FA) is called the soft image of FA under 𝜓. Moreover we 

can define a soft set 𝜓−1
(GB) over U, where 𝜓−1

(GB) : A → P(U) is a set-valued function defined by 

𝜓−1
(GB)(a) = G(𝜓 (a)) for all a ∈A. Then, 𝜓−1

(GB) is called the soft pre image (or inverse image) of GB under 

𝜓. 

2.6.Definition[13]: Let FA and GB be soft sets over the common universe U and 𝜓be a function from A to B. 

Then we can define the soft set 𝜓⋆(FA) over U, where 𝜓⋆(FA) : B→P(U) is a set-valued function defined 

by 𝜓⋆(FA)(b)=∩{F(a) | a ∈A and𝜓 (a) = b}, if 𝜓−1
(b) ≠ ∅, 

 =0 otherwise for all b ∈B. Here, 𝜓⋆(FA) is called the soft anti image of FA under 𝜓. 
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2.7 Definition [8]:Let fAbe a soft set over U and α be a subset of U. Then, upper α-inclusion of a soft set fA, 

denoted by f
 α

A, is defined as f 
α
A = {x ∈ A : fA(x) ⊇α} 

 

3.SI-action on M-N module structures and M-N-ideal structures  

In this section, we first define fuzzy soft union action, abbreviated as  SI-action on M-N module and 

M-N-ideal structures with illustrative examples. We then study their basic results with respect to soft set 

operation.   

 

3.1 Definition: Let S be an M-N module and 𝑓𝑠 be a soft set over U.Then𝑓𝑠 is called SI-action on M-N 

module over U if it satisfies the following conditions; 

(SIM-1) 𝑓𝑠(m(x+y)) ⊇𝑓𝑠(x) ∩𝑓𝑠(y) 

(SIM-2)  𝑓𝑠(-x) ⊇𝑓𝑠(x) 

(SIM-3) 𝑓𝑠(nx) ⊇𝑓𝑠(x) 

For all x, y ∈ S and n ∈N m ∈ M .  

 

3.2 Example: Consider the  module M-N ={0,x,y,z},be the near-ring under the operation defined by the 

following table: 

 

 

 

Let S=M-N and S be the set of parameters 

and U=  
a a
0 a

  / a, b ∈ Z6 ,2⨉2 matrices with 𝑍6 terms, is the universal set .we construct a fuzzy soft set. 

𝑓𝑠(0)=    
0 0
0 0

 ,  
2 2
0 2

 ,  
3 3
0 3

  ,𝑓𝑠 (x)=    
0 0
0 0

 ,  
2 2
0 2

 ,  
3 3
0 3

  , 

𝑓𝑠 (y)=    
2 2
0 2

  , and fs  (z)=    
2 2
0 2

   

Then one can easily show that the soft set 𝑓𝑠 is a SI-action on M-N module. 

 

3.3 Proposition: Let  𝑓𝑠 be a SI-action on M-N module over U. Then, 𝑓𝑠(0) ⊇ 𝑓𝑠(x) 

for all x∈ 𝑆 . 

Proof: Assume that 𝑓 𝑠  is SI-action over U.Then, for all x∈S , 

𝑓 𝑠 (m0)= 𝑓 𝑠 (m(x-x)) ⊇𝑓 𝑠 (x)∩ 𝑓 𝑠 (-x)=𝑓 𝑠 (x)∩ 𝑓 𝑠 (x)=𝑓 𝑠 (x). 

 

3.4 Theorem: Let S be a SI-action on M-N module and  𝑓 𝑠  be a soft set over U. 

Then𝑓 𝑠 is SI-action of M-N module over U if and only if 

(i)𝑓 𝑠 (m(x-y)) ⊇ 𝑓 𝑠 (x) ∩ 𝑓 𝑠 (y) 

+ 0      x      y      z 

 0 

x 

y 

z 

0      x      y      z    

x      0      z      y    

y      z      0      x    

z      y      x      0    

. 0      x      y      z 

0 

x 

y 

z 

0      0      0      0   

x      x      x      x    

0      0      0      0    

x      x      x      x    
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(ii)𝑓 𝑠 (nx) ⊇ 𝑓 𝑠 (x)  for all x,y ∈S and n ∈N. 

Proof: Suppose𝑓 𝑠  is a  fuzzy SI-action on M-N module over U. Then, by definition-3.1,  

𝑓 𝑠 (xy) ⊇ 𝑓 𝑠 (y)  and 𝑓 𝑠 (m(x-y)) ⊇ 𝑓 𝑠 (x) ∩ 𝑓 𝑠 (-y) = 𝑓 𝑠 (x) ∩ 𝑓 𝑠 (y) for all x,y ∈  S 

 Conversely, assume that 𝑓 𝑠 (xy)⊇ 𝑓 𝑠 (y)  and 𝑓 𝑠 (m(x-y))⊇ 𝑓 𝑠 (x) ∩ 𝑓 𝑠 (y) for all x,y ∈S. 

 If we choose x=0,then 𝑓 𝑠 (0-y)= 𝑓 𝑠 (-y) ⊇ 𝑓 𝑠 (0) ∩ 𝑓 𝑠 (y) =𝑓 𝑠 (y) by proposition-3.1. Similarly 𝑓 𝑠 (ny)=

𝑓 𝑠 (−(-y)) ⊇ 𝑓 𝑠 (-y),thus 𝑓 𝑠 (-y) = 𝑓 𝑠 (y) for all y ∈S. Also ,by assumption 

𝑓 𝑠 (m(x-y))⊇ 𝑓 𝑠 (x) ∩ 𝑓 𝑠 (-y) = 𝑓 𝑠 (x) ∩ 𝑓 𝑠 (y).  This complete the proof.  

 

3.5 Theorem: Let 𝑓 𝑠 be a  SI-action on M-N module over U.  

                        (i)If𝑓 𝑠 (m(x-y))=  𝑓 𝑠 (0)  for any x,y ∈S ,then 𝑓 𝑠 (x) = 𝑓 𝑠 (y). 

                       (ii)𝑓 𝑠 (m(x-y))=  𝑓 𝑠 (0)  for any x, y ∈S, then 𝑓 𝑠 (x) = 𝑓 𝑠 (y). 

Proof: Assume that 𝑓 𝑠 (x-y)=  𝑓 𝑠 (0)  for any x,y ∈ S ,then  

𝑓 𝑠 (mx) = 𝑓 𝑠 (m(x-y+y)) ⊇ 𝑓 𝑠 (x-y)∩ 𝑓 𝑠 (y) 

                      =𝑓 𝑠 (0) ∩ 𝑓 𝑠 (y) =𝑓 𝑠 (y) 

       and similarly, 

𝑓 𝑠 (ny) = 𝑓 𝑠 (𝑛 (y-x)+x))⊇ 𝑓 𝑠 (y-x)∩ 𝑓 𝑠 (x) 

                      =𝑓 𝑠 (−(y-x))  ∩ 𝑓 𝑠 (x) 

                       =𝑓 𝑠 (0) ∩ 𝑓 𝑠 (x) =𝑓 𝑠 (x) 

Thus, 𝑓 𝑠 (x) =𝑓 𝑠 (y) which completes the proof .Similarly, we can show the result (ii). 

It is known that if S is M-N module, then (S, +)is a group but not necessarily abelian. That is, for any x, y ∈  

S, x + y  needs not be equal  to y + x. However, we have the following: 

 

3.6 Theorem : Let 𝑓 𝑠  be   SI-action on M-N module over U and x ∈S. Then, 

𝑓 𝑠 (x) =𝑓 𝑠 (0)⇔ 𝑓 𝑠 (x+y) = 𝑓 𝑠 (y+x) = 𝑓 𝑠 (y) for all y ∈S . 

Proof: Suppose that 𝑓 𝑠 (x+y)=  𝑓 𝑠 (y+x) = 𝑓 𝑠 (y)  for all y ∈S. Then, by choosing y=0, 

we obtain that   𝑓 𝑠 (x) =𝑓 𝑠 (0). 

Conversely, assume that  𝑓 𝑠 (x) =𝑓 𝑠 (0). Then by proposition-3.1,we have  

𝑓 𝑠 (0) =𝑓 𝑠 (x)⊇ 𝑓 𝑠 (y), ∀ y ∈S…………… (1) 

Since 𝑓 𝑠  SI-action on M-N module over U, then 

𝑓 𝑠 (m(x + y)) ⊇ 𝑓 𝑠 (x)∩ 𝑓 𝑠 (y) = 𝑓 𝑠 (y),∀ y ∈S. Moreover, for all y ∈S 

𝑓 𝑠 (ny) = 𝑓 𝑠 (𝑛 (-x)+x)+y)) = 𝑓 𝑠 (n(-x+(x + y))) ⊇ 𝑓 𝑠 (-x)∩ 𝑓 𝑠 (x+y) 

                     = 𝑓 𝑠 (x)∩ 𝑓 𝑠 (x+y)= 𝑓 𝑠 (x+y) 

Since by equation (1),𝑓 𝑠 (x) ⊇ 𝑓 𝑠 (y) for all y ∈ S and x, y ∈S ,implies that x + y ∈S .Thus, it follows that 

𝑓 𝑠 (x) ⊇ 𝑓 𝑠 (x+y). So 𝑓 𝑠 (x+y) = 𝑓 𝑠 (y) for all y ∈S. 

Now, let x ∈S. Then, for all  x, y ∈S 

     𝑓 𝑠 (m(y + x)) = 𝑓 𝑠 (𝑚(y+x+(y-y))) 

                         = 𝑓 𝑠 (𝑚(y+(x+y)-y)) 

                         ⊇ 𝑓 𝑠 (y)∩ 𝑓 𝑠 (x+y)∩ 𝑓 𝑠 (y) 

                         =𝑓 𝑠 (y)∩ 𝑓 𝑠 (x+y)= 𝑓 𝑠 (y) 

Since 𝑓 𝑠 (x+y) = 𝑓 𝑠 (y).Furthermore, for all y ∈S 
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   𝑓 𝑠 (ny)         = 𝑓 𝑠 (𝑛 (y+(x-x))) 

                     = 𝑓 𝑠 ((y + x)-x )  

                     ⊇ 𝑓 𝑠 (y + x)∩ 𝑓 𝑠 (x) 

                     = 𝑓 𝑠 (y + x) by equation(1). 

It follows that 𝑓 𝑠 (y+x) = 𝑓 𝑠 (y) and so𝑓 𝑠 (x+y)= 𝑓 𝑠 (y+x)= 𝑓 𝑠 (y) , for all y ∈S ,which completes the 

proof. 

 

3.7 Theorem: Let S be a near-field and 𝑓 𝑠 be a  soft set over U. If 𝑓 𝑠 (0)⊇ 𝑓 𝑠 (1)= 𝑓 𝑠 (x) 

for all 0≠ x ∈S, then it is  SI-action on M-N module over U. 

Proof: Suppose that 𝑓 𝑠 (0)⊇ 𝑓 𝑠 (1) = 𝑓 𝑠 (x)  for all0≠ x ∈S. In order to prove that it is 

SI-action on M-N module over U,it is enough to prove that 𝑓 𝑠 (m(x-y))⊇ 𝑓 𝑠 (x)∩ 𝑓 𝑠 (y) 

and 𝑓 𝑠 (nx)⊇ 𝑓 𝑠 (x). 

Let   x, y ∈ S. Then we have the following cases: 

Case-1: Suppose that x≠ 0 and y=0 or x=0 and y≠ 0. Since S is a near-field, so it follows that nx=0and  

𝑓 𝑠 (nx) = 𝑓 𝑠 (0).since  𝑓 𝑠 (0)⊇ 𝑓 𝑠 (x),for all  x ∈S ,so𝑓 𝑠 (nx) = 𝑓 𝑠 (0) ⊇ 𝑓 𝑠 (x),and  

𝑓 𝑠 (nx) = 𝑓 𝑠 (0) ⊇ 𝑓 𝑠 (y). This imply 𝑓 𝑠 (nx) ⊇ 𝑓 𝑠 (x). 

Case-2: Suppose that x≠ 0 and y≠0. It follows that nx≠0.Then,𝑓 𝑠 (nx) = 𝑓 𝑠 (1) = 𝑓 𝑠 (x)and 

𝑓 𝑠 (nx) = 𝑓 𝑠 (1) = 𝑓 𝑠 (y),which implies that 𝑓 𝑠 (nx)⊇ 𝑓 𝑠 (x). 

Case-3: suppose that x= 0 and y=0, then clearly 𝑓 𝑠 (nx)⊇ 𝑓 𝑠 (x).Hence 𝑓 𝑠 (nx)⊇ 𝑓 𝑠 (x), 

for all  x, y ∈S. 

Now, let x, y ∈S. Then x-y=0 or x + y≠ 0.If x + y=0,then either x=y=0 or x≠ 0,y≠ 0 and x=y.  

But, since  𝑓 𝑠 (x+y) = 𝑓 𝑠 (0) ⊇ 𝑓 𝑠 (x),for all x ∈  N, it follows that 𝑓 𝑠 (𝑚(x+y)) = 𝑓 𝑠 (m0) ⊇ 𝑓 𝑠 (x)∩

𝑓 𝑠 (y). 

If  x + y≠0,then either x≠ 0,y≠ 0 and x≠y or  x≠ 0 and y=0 or x=0 and y≠ 0. 

Assume that x≠ 0,y≠ 0 and x≠y.This follows that  

𝑓 𝑠 (m(x-y)) = 𝑓 𝑠 (1) = 𝑓 𝑠 (x)⊇ 𝑓 𝑠 (x)∩ 𝑓 𝑠 (y). 

Now, let   x≠ 0 and y=0. Then 𝑓 𝑠 (m(x + y)) ⊇ 𝑓 𝑠 (x)∩ 𝑓 𝑠 (y). Finally, let x=0 and y≠ 0. 

Then,𝑓 𝑠 (m(x + y)) ⊇ 𝑓 𝑠 (x)∩ 𝑓 𝑠 (y). Hence 𝑓 𝑠 (x-y) ⊇ 𝑓 𝑠 (x)∩ 𝑓 𝑠 (y), for all x, y ∈S. 

Thus,𝑓 𝑠  is  SI-action on M-N module over U.  

 

3.8 Theorem: Let 𝑓 𝑠  and𝑓 𝑇  be two  SI-action on M-N module over U. Then𝑓 𝑠 ˄𝑓 𝑇  is 

 soft SI-action on M-N module over U. 

Proof: let (𝑥 1, 𝑦 1), (𝑥 2, 𝑦 2) ∈  S×T.Then  

                         𝑓 𝑆 ˄𝑇  𝑚( 𝑥 1,𝑦 1 −  𝑥 2,𝑦 2 )  =𝑓 𝑆 ˄𝑇 (𝑚(𝑥
1−

𝑥 2,𝑦 1−𝑦 2)) 

                                                                          = 𝑓 𝑆  (𝑥 1+𝑥 2 )∩ 𝑓 𝑇  (𝑦 1+𝑦 2 ) 

                                                                            ⊇ 𝑓 𝑆  (𝑥 1 ) ∩ 𝑓 𝑆  (𝑥 2 ) ∩  𝑓 𝑇  (𝑦 1 ) ∩ 𝑓 𝑇  (𝑦 2 )  

                                                                   = 𝑓 𝑆  (𝑥 1 ) ∩ 𝑓 𝑇  (𝑦 1 ) ∩  𝑓 𝑆  (𝑥 2 ) ∩ 𝑓 𝑇  (𝑦 2 )  

                      = 𝑓 𝑆 ˄𝑇  𝑥 1,𝑦 1 ∩ 𝑓 𝑆 ˄𝑇  𝑥 2,𝑦 2  

 and 
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𝑓 𝑆 ˄𝑇   𝑛 1,𝑛 2 ,  𝑥 2,𝑦 2  = 𝑓 𝑆 ˄𝑇  𝑛 1𝑥 2,𝑛 2𝑦 2
  

                                                                                 =  𝑓 𝑆  𝑛 1𝑥 2 ∩ 𝑓 𝑇  (𝑛 2𝑦 2 ) 

                                                                                            ⊇𝑓 𝑆  𝑥 2 ∩ 𝑓 𝑇  𝑦 2  

                                                                                  =𝑓 𝑆 ˄𝑇  𝑥 2,𝑦 2  

Thus  𝑓 𝑠 ˄𝑓 𝑇  is  SI-action on M-N module over U. 

Note that  𝑓 𝑠 ˅𝑓 𝑇  is not  SI-action on M-N module over U. 

3.9 Example: Assume  U =𝑝 3 is the universal set. Let S = 𝑍 3  and H =  
𝑎 𝑎
𝑏 𝑏

  / 𝑎 , 𝑏 ∈ 𝑍 3   

2× 2 matrices with 𝑍 3 terms, be set of parameters. We define  SI-action on M-N module𝑓 𝑆 over U=𝑝 3 by  

𝑓 𝑆 (0) =𝑝 3  

𝑓 𝑆 (1) =   1 ,  1 2 , (1 3 2)  

𝑓 𝑆 (2) =  1 ,  1 2 ,  1 2 3 , (1 3 2)  

We define  SI-action on M-N-module 𝑓 𝐻over U=𝑝 3 by 

𝑓 𝐻   
0 0

0 0
   =𝑝 3  

𝑓 𝐻   
0 0

1 1
   =  1 ,  1 2 , (1 3 2)  

Then 𝑓 𝑠 ˅𝑓 𝑇  is not SI-action on M-N module over U. 

 

3.10 Definition : Let 𝑓 𝑆 ,𝑔 𝑇  be SI-action on M-N module over U. Then product of fuzzy  

SI-action on M-N module𝑓 𝑆 and𝑔 𝑇  is defined as 𝑓 𝑆 × 𝑔 𝑇  =ℎS×T, where 

ℎS×T 𝑥 , 𝑦  = 𝑓 𝑆 (𝑥 ) × 𝑔 𝑇 (y) for all (x,y) ∈S × T. 

 

3.11 Theorem : If  𝑓 𝑆 𝑎𝑛𝑑 𝑔 𝑇  are  SI-action on M-N module over U. Then so is 𝑓 𝑆 × 𝑔 𝑇  

over U×U. 

Proof: By definition-3.2, let 𝑓 𝑆 × 𝑔 𝑇  =ℎS×T, where ℎS×T 𝑥 , 𝑦  = 𝑓 𝑆 (𝑥 ) × 𝑔 𝑇 (y)  

for all (x,y) ∈S × T. Then for all (𝑥 1, 𝑦 1), (𝑥 2, 𝑦 2) ∈S × T and  𝑛 1,𝑛 2 =N×N. 

ℎS×T 𝑚( 𝑥 1,𝑦 1 −  𝑥 2,𝑦 2 )  = ℎS×T (𝑚(𝑥
1+

𝑥 2,𝑦 1+𝑦 2)) 

                                               = 𝑓 𝑆  (𝑚(𝑥
1+

𝑥 2, × 𝑔 𝑇  (𝑚(𝑦
1+

𝑦 2)) ) 

                                                     ⊇  𝑓 𝑆  (𝑥 1 ) ∩ 𝑓 𝑆  (𝑥 2 ) ×  𝑔 𝑇  (𝑦 1 ) ∩ 𝑔 𝑇  (𝑦 2 )  

                                               = 𝑓 𝑆  (𝑥 1 ) × 𝑔 𝑇  (𝑦 1 ) ∩  𝑓 𝑆  (𝑥 2 ) × 𝑔 𝑇  (𝑦 2 )  

= ℎS×T 𝑥 1,𝑦 1 − ℎS×T 𝑥 2,𝑦 2  

        ℎS×T   𝑛 1,𝑛 2  𝑥 2,𝑦 2  = ℎS×T 𝑛 1𝑥 2,𝑛 2𝑦 2
                   

                                              =  𝑓𝑠  𝑛 1𝑥 2 × 𝑔 𝑇  (𝑛 2𝑦 2 ) 

                                                    ⊇𝑓 𝑆  𝑥 2 × 𝑔 𝑇  𝑦 2  

                                              =ℎS×T 𝑥 2,𝑦 2  

Hence 𝑓 𝑆 × 𝑔 𝑇  =ℎS×T is  SI-action on M-N module over U. 

 

3.12Theorem: If 𝑓 𝑆  and ℎS are SI-action on M-N module over U, then so is  𝑓 𝑆 ∩ ℎS over U. 

Proof:  Let x, y∈  s  and  n ∈  N then  
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(𝑓 𝑆 ∩ ℎS)(𝑚(x+y)) =𝑓 𝑆  (m(x + y)) ∩ ℎS(m(x+y)) 

                                 ⊇ 𝑓 𝑆  (𝑥  ) ∩ 𝑓 𝑆  (𝑦  ) ∩  ℎ𝑆  (𝑥  ) ∩ ℎ𝑆  (𝑦  )  

                             = 𝑓 𝑆  (𝑥  ) ∩ ℎ𝑆 (𝑥  ) ∪  𝑓 𝑆  (𝑦  ) ∩ ℎ𝑆  (𝑦  )  

                             = (𝑓 𝑆 ∩ ℎS)(𝑥 ) ∩(𝑓 𝑆 ∩ ℎS)(𝑦 ) 

(𝑓 𝑆 ∩ ℎS)(𝑛 x)   = 𝑓 𝑆   (𝑛𝑥 ) ∩ ℎS(𝑛𝑥 ) 

                            ⊇ 𝑓 𝑆   (𝑥 ) ∩ ℎS(𝑥 )   = (𝑓 𝑆 ∩ ℎS)(x).Therefore, (𝑓 𝑆 ∩ ℎS) is SI-action on N-module over U. 

4.SI-action on M-N-ideal structures  

4.1 Definition: Let S be an  M-N module and  𝑓 𝑆  be a soft set over U. Then 𝑓 𝑆 is 

called SI-action on M-N-ideal of S over U if the following conditions are satisfied: 

(i) 𝑓 𝑠 (𝑚(𝑥 + 𝑦 )) ⊇ 𝑓 𝑠 (𝑥 )  ∩ 𝑓 𝑠 (𝑦 ) 

(ii) 𝑓 𝑠 (−𝑥 ) =𝑓 𝑠 (𝑥 )  

(iii) 𝑓 𝑠 (𝑥 + 𝑦 − 𝑥 ) ⊇ 𝑓 𝑠 (𝑦 )  

(iv) 𝑓 𝑠 (𝑛 (𝑥 + 𝑦 ) − 𝑛𝑥 ) ⊇ 𝑓 𝑠 (𝑦 ) for all x, y∈  S  and  n∈  N.  

Here, note that    

𝑓 𝑠 (𝑥 + 𝑦 ) ⊇ 𝑓 𝑠 (𝑥 ) ∩ 𝑓 𝑠 (𝑦 ) and 𝑓 𝑠 (−𝑥 ) =𝑓 𝑠 (𝑥 ) imply 𝑓 𝑠 (𝑥 − 𝑦 ) ⊇ 𝑓 𝑠 (𝑥 ) ∩ 𝑓 𝑠 (𝑦 ) 

4.2 Example: Consider the near –ring N= 0, x, y, z  with the following tables 

 

 

 

 

 

 

 

Let S=N be the parameters and U=𝐷2 ,dihedral group, be the universal set. We define a fuzzy soft set 𝑓 𝑠 over 

U by𝑓 𝑠  0 = 𝐷2 , 𝑓 𝑠  𝑥  =  𝑒 , 𝑏 , 𝑏𝑎  ,  𝑓 𝑠  𝑦  =  𝑎 , 𝑏   ,𝑓 𝑠  𝑧  =  𝑏  . 

Then, one can show that  𝑓 𝑠  is SI-action on M-N-ideal of S over U. 

 

4.3 Example: Consider the near –ring N= 0,1,2,3  with the following tables 

 

 

 

 

 

 

 

Let S=N be the set of parameters and U= 𝑍 + be the universal set. We define a fuzzy soft set   𝑓 𝑠 over U by   

𝑓 𝑠  0 =    1, 2, 3, 5, 6, 7, 9, 10, 11, 17   

𝑓 𝑠  1 = 𝑓 𝑠  3 =    1, 3, 5, 7, 9, 11   

𝑓 𝑠  2 =    1, 5, 7, 9, 11   

Since 𝑓 𝑠  2.  3 + 1 − 2.3 = 𝑓 𝑠  2.1 − 2.3 = 𝑓 𝑠  3 − 3 = 𝑓 𝑠  0 ⊈ 𝑓 𝑠  1  

. 0      x      y      z 

0 

x 

y 

z 

0      0      0      0   

0      0      0      x    

0      x      y      y    

0      x      y      z    

+ 0      x      y      z 

 0 

x 

y 

z 

0      x      y      z    

x      0      z      y 

y      z      0      x    

z      y      x      0    

+ 0      1      2      3 

0 

1 

2 

3 

0      1      2      3    

1      2      3      0    

2      3      0      1    

3      0      1      2    

. 0      x      y      z 

0 

x 

y 

z 

0      0      0      0   

0      1      0      1    

0      3      0      3    

0      2      0      2    
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Therefore,𝑓 𝑠  is not  SI-action on M-N-ideal over U. 

It is known that if N is a zero- symmetric near-ring, then every M-N-ideal of S is also  

M-N module of S. Here, we have an analog for this case. 

 

4.4 Theorem : Let N be a zero- symmetric near-ring. Then, every  SI-action on M-N-ideal is  

SI-action on M-N module over U. 

Proof: Let 𝑓 𝑠  be an SI-action on M-N-ideal on S over U. Since𝑓 𝑠 (n(x + y)- nx) ⊇𝑓 𝑠 (y), for all 

x, y ∈ S, and n∈N, in particular for x=0, it follows that 𝑓 𝑠 (n(0+y)-n.0) = 𝑓 𝑠 (ny-0)=𝑓 𝑠 (y) ⊇ 𝑓 𝑠 (y). 

Since the other condition is satisfied by definition-4.1,𝑓 𝑠  is SI-action on M-N-ideals of S over U. 

4.5 Theorem : Let𝑓 𝑠  be SI-action on M-N-ideal of S and 𝑓 𝑇  be  SI-action on M-N-ideal of T over U. Then  

𝑓 𝑠 ˄𝑓 𝑇  is SI-action on M-N-ideal of S×T over U. 

 

4.6 Theorem : If 𝑓 𝑠  is  SI-action on M-N-ideal of S and 𝑓 𝑇  be  SI-action on M-N-ideal of T over U, then  

𝑓 𝑠 × 𝑓 𝑇  is  SI-action on M-N-ideal over U×U. 

 

4.7 Theorem : If 𝑓 𝑠  and ℎ𝑠  are two  SI-action on M-N modules of S over U, then 𝑓 𝑆 ∩ ℎS is  

SI-action on M-N-ideal over U. 

 

5.Application of  SI-action on M-N-module 

 In this section, we give the applications of  soft image, soft pre-image, lower 

𝛼 -inclusion of  soft sets and N-module homomorphism with respect to SI-action on 

M-N module and M-N-ideals. 

 

5.1Theorem : If 𝑓 𝑠  is  SI-action on M-N-ideal of S over U, then 𝑆 𝑓 ={x ∈S / 𝑓 𝑠 (x)=𝑓 𝑠 (0)} is a M-N-ideal 

of S. 

Proof: It is obvious that 0 ∈ 𝑆 𝑓  we need to show that (i) x-y ∈ 𝑆 𝑓 , (ii) s+x-s ∈ 𝑆 𝑓  and  

(iii) n(s + x)-ns ∈ 𝑆 𝑓  for all x,y ∈ 𝑆 𝑓 and n∈N and s∈S. 

If x, y∈ 𝑆 𝑓 , then 𝑓 𝑠 (x)=𝑓 𝑠  y = 𝑓 𝑠 (0). By proposition-3.1, 

𝑓 𝑠 (0) ⊇𝑓 𝑠 (x-y), 𝑓 𝑠 (0) ⊇𝑓 𝑠 (s+x-s), and 𝑓 𝑠 (0) ⊇𝑓 𝑠 (n(s+x)-ns) for all x,y ∈ 𝑆 𝑓 and n∈N and s∈S. 

Since 𝑓 𝑠  is SI-action on M-N-ideal of S over U, then for all x, y ∈ 𝑆 𝑓 and n ∈ N and s∈S. 

(i) 𝑓 𝑠 (m(x-y)) ⊇𝑓 𝑠 (x) ∩ 𝑓 𝑠 (y) = 𝑓 𝑠 (0). 

(ii) 𝑓 𝑠 (s+x-s) ⊇𝑓 𝑠 (x) =𝑓 𝑠 (0). 

(iii)𝑓 𝑠 (n(s+x)-ns) ⊇𝑓 𝑠 (x) =𝑓 𝑠 (0). 

Hence 𝑓 𝑠 (x-y) = 𝑓 𝑠 (0), 𝑓 𝑠 (s+x-s)=𝑓 𝑠 (0) and 𝑓 𝑠 (n(s+x)-ns) =𝑓 𝑠 (0),for all x,y ∈ 𝑆 𝑓 and n∈N and s∈S. 

Therefore 𝑆 𝑓  is M-N-ideal of S. 

 

5.2 Theorem : Let 𝑓 𝑠  be soft set over U and 𝛼  be a subset of U such that ∅⊇𝛼 ⊇ 𝑓 𝑠 (0). If 𝑓 𝑠  is SI-action 

on M-N-ideal over U, then 𝑓 𝑠
⊇𝛼 is an N-ideal of S. 

Proof: Since 𝑓 𝑠 (0)⊇ 𝛼 , then 0 ∈ 𝑓 𝑠
⊇𝛼  and ∅ ≠ 𝑓 𝑠

⊆𝛼⊇ S. Let x,y ∈ 𝑓 𝑠
⊇𝛼 , then 𝑓 𝑠 (x)⊇ 𝛼  and 𝑓 𝑠 (y)⊇

𝛼 . We need to show that  
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 (i) x-y ∈ 𝑓 𝑠
⊇𝛼  

 (ii) s + x- s ∈ 𝑓 𝑠
⊇𝛼  

           (iii) n(s + x)- ns ∈ 𝑓 𝑠
⊇𝛼  for all x,y ∈ 𝑓 𝑠

⊇𝛼 and n∈N and s∈S. 

Since 𝑓 𝑠  is  SI-action on M-N-ideal over U, it follows that 

(i) 𝑓 𝑠 (m(x-y))⊇𝑓 𝑠 (x)∩ 𝑓 𝑠 (y) ⊇ 𝛼 ∩ 𝛼  =𝛼 , 

(ii) 𝑓 𝑠 (s+x-s)⊇𝑓 𝑠 (x) ⊇ 𝛼  and 

(iii)𝑓 𝑠 (n(s+x)-ns) ⊇𝑓 𝑠 (x) ⊇ 𝛼 . Thus, the proof is completed. 

 

5.3 Theorem : Let 𝑓 𝑠  and 𝑓 𝑇  be  soft sets over U and 𝜒  be an M-N-isomorphism from S to T.If 𝑓 𝑠  is  SI-

action on M-N-ideal of S over U, then 𝜒 (𝑓 𝑠 ) is SI-action on M-N-ideal of T over U. 

Proof: Let 𝛿 1,𝛿 2 and n∈ N. Since χ is surjective, there exists 𝑠 1,𝑠 2 ∈ S such that χ(𝑠 1) = 𝛿 1 and  

χ(𝑠 2)=𝛿 2. Then 

 (χ𝑓 𝑠 ) (𝑚(𝛿
1
-𝛿 2)) = ∪ { 𝑓 𝑠 (s) / s∈ S , χ(s) = 𝛿 1-𝛿 2 } 

   = ∪ { 𝑓 𝑠 (s) / s∈ S , s =𝜒 −1(𝛿 1-𝛿 2) } 

     = ∪ { 𝑓 𝑠 (s) / s∈ S , s = 𝜒 −1(𝜒 (𝑠 1-𝑠 2))= 𝑠 1-𝑠 2} 

                       = ∪ { 𝑓 𝑠 (𝑠 1-𝑠 2) / 𝑠 𝑖 ∈ S , χ(𝑠 𝑖 ) = 𝛿 𝑖  , 𝑖  =1,2,…} 

 ⊇∪ { 𝑓 𝑠 (𝑠 1) ∩ 𝑓 𝑠 (𝑠 2)) / 𝑠 𝑖 ∈ S , χ(𝑠 𝑖 ) = 𝛿 𝑖  , 𝑖  =1,2,…} 

       =  ∪  𝑓 𝑠  𝑠 1 /𝑠 1 ∈  S , χ(𝑠 1)  =  𝛿 1  ∩  ∪  𝑓 𝑠  𝑠 2 /𝑠 2 ∈  S , χ(𝑠 2)  =  𝛿 2    

            = (χ(𝑓
𝑠

)) (𝛿 1) ∩(χ(𝑓
𝑠

)) (𝛿 2)  

Also (χ𝑓 𝑠 ) (𝛿 1+𝛿 2-𝛿 1) = ∪ { 𝑓 𝑠 (s) / s∈ S , χ(s) = 𝛿 1+𝛿 2-𝛿 1 } 

= ∪ { 𝑓 𝑠 (s) / s∈ S , s = 𝜒 −1(𝛿 1+𝛿 2-𝛿 1) } 

  = ∪ { 𝑓 𝑠 (s) / s∈ S , s = 𝜒 −1(𝜒 (𝑠 1+𝑠 2-𝑠 1))= 𝑠 1+𝑠 2-𝑠 1} 

  = ∪ { 𝑓 𝑠 (𝑠 1+𝑠 2-𝑠 1) / 𝑠 𝑖 ∈ S , χ(𝑠 𝑖 ) = 𝛿 𝑖  , 𝑖  =1,2,…} 

⊇∪  𝑓 𝑠  𝑠 2 /𝑠 2 ∈  S , χ(𝑠 2)  =  𝛿 2  

 = (χ(𝑓
𝑠

)) (𝛿 2) 

Furthermore,(χ𝑓 𝑠 ) (n(𝛿
1
+𝛿 2)-n𝛿 1) = ∪ { 𝑓 𝑠 (s) / s∈ S , χ(s) = n(𝛿

1
+𝛿 2)-n𝛿 1 } 

     = ∪ { 𝑓 𝑠 (s) / s∈ S , s = 𝜒 −1(n(𝛿 1+𝛿 2)-n𝛿 1) } 

   = ∪ { 𝑓 𝑠 (s) / s∈ S , s = n(𝑠 1+𝑠 2)-n𝑠 1} 

       = ∪ { 𝑓 𝑠 (n(𝑠 1+𝑠 2)-n𝑠 1) / 𝑠 𝑖 ∈ S , χ(𝑠 𝑖 ) = 𝛿 𝑖  , 𝑖  =1,2,…} 

⊇∪  𝑓 𝑠  𝑠 2 /𝑠 2 ∈  S , χ(𝑠 2)  =  𝛿 2  

      = (χ(𝑓
𝑠

)) (𝛿 2). 

Hence χ(𝑓
𝑠

) is  SI-action on M-N-ideal of T over U. 

 

5.4 Theorem : Let 𝑓 𝑠  and 𝑓 𝑇  be soft sets over U and 𝜒  be an M-N-isomorphism from S to T. 

If 𝑓 𝑇  is  SI-action on M-N-ideal of T over U, then 𝜒 −1(𝑓 𝑇 ) is  SI-action on M-N-ideal of S over U. 

Proof: Let 𝑠 1,𝑠 2 ∈S and n∈ N. Then  

 (𝜒 −1(𝑓 𝑇 )) (𝑚(𝑠
1
-𝑠 2)) = 𝑓 𝑇 (χ (𝑠 1-𝑠 2)) 

         = 𝑓 𝑇 (χ (𝑠 1)-χ(𝑠 2)) 

   ⊇𝑓 𝑇 (χ (𝑠 1)) ∩ 𝑓 𝑇 (χ (𝑠 2)) 
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         = (𝜒 −1(𝑓 𝑇 ))(𝑠 1) ∪ (𝜒 −1(𝑓 𝑇 ))(𝑠 2). 

Also (𝜒 −1(𝑓 𝑇 )) (𝑠 1+𝑠 2 − 𝑠 1) = 𝑓 𝑇 (χ (𝑠 1+𝑠 2 − 𝑠 1)) 

              = 𝑓 𝑇 (χ (𝑠 1)+χ(𝑠 2) − 𝜒 (𝑠 1)) 

   ⊇𝑓 𝑇 (χ (𝑠 2)) = (𝜒 −1(𝑓 𝑇 ))(𝑠 2) 

Furthermore, (𝜒 −1(𝑓 𝑇 )) (n(𝑠
1
+𝑠 2) − n𝑠 1) = 𝑓 𝑇 (χ (n(𝑠

1
+𝑠 2) − n𝑠 1)) 

                                   = 𝑓 𝑇 (n(χ (𝑠 1)+χ(𝑠 2)) − n𝜒 (𝑠 1)) 

   ⊇𝑓 𝑇 (χ (𝑠 2)) = (𝜒 −1(𝑓 𝑇 ))(𝑠 2) 

Hence, (𝜒 −1(𝑓 𝑇 )) is  SI-action on M-N-ideal of S over U. 

 

Conclusion: we have defined a new type of M-N-module action on a soft set, called SI-action on M-N-

module by using the soft sets. This new concept picks up the soft set theory and M-N-module theory together 

and therefore, it is very functional for obtaining results in the mean of M-N-module structure. Based on this 

definition, we have introduced the concept of SI-action on M-N-ideal. We have investigated these notions 

with respect to soft image, soft pre-image and upper𝛼 -inclusion of soft sets. Finally, we give some 

application of  SI-action on M-N-ideal to M-N-module theory. 

Future Work: To extend this study, one can further study the other algebraic structures such as different 

algebra’s like  KU-ideals and R- ideals in view of their SI-actions. 
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