Certain Results on Quasi- Hadmard products

R K Laddha

Department of Mathematics, MLV College,Bhilwara, India

	ABSTRACT
	In this paper,we found certain results on Quasi-Hadmard
	products. For analytic starlike convex p-valent general
KEYWORDS: - p-valent, infinite series, summation formula	

Copyright © 2017 International Journals of Multidisciplinary Research Academy. All rights reserved.

1. Introduction: Many authors [1],[2],[5],[8],[9],[10] etc., studied the various classes of the analytics starlikes convex (Univalent as well p-valent) functions and there important properties. In this paper we study the Quasi-Hadamard Products for the class $T_{p, n}^{*}(A, B, \alpha)$ which introduce by Singh and Sohi[5].

Let $S_{p, n}$ denote the class of functions[5] of the form
$f(z)=z^{p}+\sum_{k=n+p} a_{k} z^{k} ; a_{k} \geq 0$
Where $n, p \in N$ and $f(z)$ is analytic and p-valent in the unit disc
$E=\{z ;|z|<1\}$,for fixed A and $\mathrm{B},-1 \leq B<A<1$; a function of the class $S_{p, n}$ is said to be in class $S_{p, n}^{*}(A, B, \alpha)$ iff
$\frac{z f^{\prime}(z)}{f(z)}<\frac{p+[(p-\alpha) A+\alpha B] z}{1+B z}, z \in E$
Or equivalently $f(z) \in S_{p, n}^{*}(A, B, \alpha)$ iff
$\left\lvert\,\left(\frac{z f^{\prime}(z)}{f(z)}-p\right) /\left(\left.(p-\alpha) A+\alpha B-B \frac{z f^{\prime}(z)}{f(z)} \right\rvert\,<1, z \in E\right.\right.$
Again $f(z)$ is said to belong to the class $K_{p, n}^{*}(A, B, \alpha)$ iff
$\frac{z f^{\prime}(z)}{\boldsymbol{p}} \in S_{p, n}^{*}(A, B, \alpha)$
Also, if $T_{p, n}$ denotes the subclass of $S_{p, n}$ consisting of functions of the form $f(z)=z^{p}-\sum_{k=n+p} a_{k} z^{k} ; a_{k} \geq 0$
(Where $n, p \in N$, and $f(z)$ is analytic and p -valent in E) then we define
$T_{p, n}^{*}(A, B, \alpha)=S_{p, n}^{*}(A, B, \alpha) \cap T_{p, n}(1.6)$
$C_{p, n}(A, B, \alpha)=K_{p, n}(A, B, \alpha) \cap T_{p, n}(1.7)$
Here, we study the class $T_{p, n}$ of p-valent functions and their corresponding subclass $T_{p, n}^{*}(A, B, \alpha)$ and $C_{p, n}(A, B, \alpha)$ of starike and convex functions. Our classes are generalizations of several subclasses available in the mathematical literature, we mention below some important special cases:
(i) For $\alpha=0$,we gets the class $T_{p, n}^{*}(A, B)$ and $C_{p, n}(A, B)$ studied by Sohi[7].
(ii) For $p=1$, we get the class of functions $f(z)$ which are analytic and univalent in unit disc E . In further subsituations $\alpha=0 ; A=1-2 \delta$ and $\mathrm{B}=-$ 1, we get the subclass that was studied by Srivastavaet. al.[9].
(iii) For $n=1$ and $p=1$, we get the class of functions $f(z)$ which are analytic and univalent in E , and the corresponding classes $T_{1,1}^{*}(A, B)$ and $C_{1,1}(A, B)$ were studied by Amrik Singh and N.S Sohi[6].
(iv) On setting $A=\beta-2 \alpha \beta \gamma$ and $B=-\beta \gamma$ in [2]. further for $\gamma=1$, we get the class of functions that were studied by seikinet al.[4]

For the class $T_{p, n}^{*}(A, B, \alpha)$ and $C_{p, n}(A, B, \alpha)$, we have the following coefficient [5] contained in.

Lemma 1: If functions $f(z) \in T_{p, n}$ satisfy the condition

$$
\begin{aligned}
& \sum_{k=n+p}^{\infty}[(1-B) k-(1-A) p-(A-B)] \alpha_{k} \leq(A-B(p-\alpha)(1.8) \\
& \boldsymbol{f}(\mathbf{z}) \in T_{p, n}^{*}(A, B, \alpha) . \text { The equality in }(1.8) \text { is attained by the function } \\
& f_{1}(z)=z^{p}-\frac{(A-B)(p-\alpha) z^{k}}{[(1-B) k-(1-A) p-(A-B) \alpha]}(k \geq n+p)(1.9)
\end{aligned}
$$

Lemma2 If functions If functions $f(z) \in T_{p, n}$ satisfy the condition

$$
\sum_{k=n+p}^{\infty}\left(\frac{k}{p}\right)[(1-B) k-(1-A) p-(A-B) \alpha] \alpha_{k} \leq(A-B)(p-\alpha)
$$

Then $f(z) \in C_{p, n}(A, B, \alpha)$. The equality in (1.10) is attained by the function

$$
\begin{equation*}
f_{2}(z)=z^{p}-\frac{p(A-B)(p-\alpha) z^{k}}{k[(1-B) k-(1-A) p-(A-B) \alpha]}(k \geq n+p) \tag{1.11}
\end{equation*}
$$

2. Quasi- Hadamard Products: Let $f_{j}(z)(j=1, \ldots \ldots . m)$ satisify(1.5), that is

$$
\begin{equation*}
f_{j}(z)=z^{p}-\sum_{k=n+p}^{\infty} a_{k_{j}} z^{k}(j=1, \ldots \ldots . m) \tag{2.1}
\end{equation*}
$$

We denote by $f_{1} * f_{2} * \ldots \ldots f_{m} *$, the Quasi- Hadamard Product of the functions $f_{1}, f_{2}, \ldots \ldots, f_{m}$ and defined as

$$
f_{1}(z) * f_{2}(z) * \ldots \ldots f_{m}(z)=z^{p}-\sum_{k=n+p}^{\infty} a_{k_{1}} a_{k_{2} a_{k_{3}} \ldots \ldots a_{k_{m}} z^{k},{ }^{k} . \ldots}
$$

With the help of Lemma 1 and 2, we obtain the Quasi- Hadamard Products for theclasses $T_{p, n}^{*}(A, B, \alpha)$ and $C_{p, n}(A, B, \alpha)$ given by.

Theorem1: If $f_{j}(z) \in T_{p, n}^{*}\left(A, B, \alpha_{j}\right)(j=1,2,3 \ldots m)$ then

$$
\left(f_{1} * f_{2} * \ldots \ldots f_{m}\right)(z) \in T_{p, n}^{*}(A, B, \beta)
$$

where
$\beta=p-\frac{(1-B) \prod_{j=1}^{m}\left(p-\alpha_{j}\right)}{\prod_{j=1}^{m}\left[(1-B) n+(A-B)\left(p-\alpha_{j}\right)\right]-(A-B) \prod_{j=1}^{m}\left(p-\alpha_{j}\right)}$
The result is sharp for functions
$f_{j}(z)=z^{p}-\frac{(A-B)\left(p-\alpha_{j}\right) z^{n+p}}{\left[(1-B) n-(A-B)\left(p-\alpha_{j}\right)\right]}(j=1, \ldots m)$
Theorem $2 f_{j}(z) \in C_{p, n}\left(A, B, \alpha_{j}\right)(j=1,2,3 \ldots m)$ then

$$
\left(f_{1} * f_{2} * \ldots \ldots f_{m}\right)(z) \in C_{p, n}(A, B, \delta)
$$

where

$$
\begin{equation*}
\delta=p-\frac{(1-B) p^{m-1} \prod_{j=1}^{m}\left(p-\alpha_{j}\right)}{(n+p)^{m-1} \prod_{j=1}^{m} 1^{\left[(1-B) n+(A-B)\left(p-\alpha_{j}\right)\right]-(A-B) p^{m-1} \Pi_{j=1}^{m}\left(p-\alpha_{j}\right)}} \tag{2.4}
\end{equation*}
$$

The result is sharp for the function the function
$f_{j}(z)=z^{p}-\frac{(A-B)\left(p-\alpha_{j}\right) z^{n+p}}{(n+p)\left[(1-B) n-(A-B)\left(p-\alpha_{j}\right)\right]}(j=1, \ldots m)$
Theorem3: If $f_{j}(z) \in T_{p, n}^{*}\left(A, B, \alpha_{j}\right)(j=1,2,3 \ldots m)$ and
$g_{i}(z) \in C_{p, n}\left(A, B, \alpha_{j}\right)(i=1,2,3 \ldots q)$ then
Then

$$
\left(f_{1} * f_{2} * \ldots \ldots * f_{m} * g_{1} * g_{2} * \ldots \ldots * g_{q}\right)(z) \in C_{p, n}(A, B, \gamma)
$$

Where
$\gamma=p-\frac{1}{L}\left[(1-B) n p^{q-1} \prod_{j=1}^{m}\left(p-\alpha_{j}\right) \prod_{i=1}^{q}\left(p-\beta_{i}\right)\right.$
and
$L=\left\{(n+p)^{q-1} \prod_{j=1}^{m}\left[(1-B) n+(A-B)\left(p-\alpha_{j}\right)\right] \prod_{i=1}^{q}[(1-B) n+\right.$
$\left.(A-B)\left(p-\beta_{i}\right)-p^{q-1}(A-B) \prod_{j=1}^{m}\left(p-\alpha_{j}\right) \prod_{j=1}^{m}\left(p-\beta_{i}\right)\right\}$

The result is sharp for functions

$$
\begin{align*}
& f_{j}(z)=z^{p}-\frac{(A-B)\left(p-\alpha_{j}\right) z^{n+p}}{\left[(1-B) n-(A-B)\left(p-\alpha_{j}\right)\right]}(j=1, \ldots m) \tag{2.8}\\
& g_{i}(z)=z^{p}-\frac{(A-B)\left(p-\beta_{i}\right) z^{n+p}}{(n+p)\left[(1-B) n+(A-B)\left(p-\beta_{i}\right)\right]}(i=1, \ldots q) \tag{2.9}
\end{align*}
$$

Proof of theorem1

We invoke the principle of mathematical induction to prove the theorem for $m=1$, we find that $\beta=\alpha_{1}$

Now, for $m=2$, we have only to find the largest β such that

$$
\begin{equation*}
\sum_{k=n+p}^{\infty} \frac{[(1-B) k-(1-A) p-(A-B) \beta}{(A-B)(p-\beta)} \alpha_{k_{1}} \alpha_{k_{2}} \leq 1 \tag{2.10}
\end{equation*}
$$

Since $f_{j}(z) \in T_{p, n}^{*}\left(A, B, \alpha_{j}\right)(j=1,2)$, from lemma 2 we have
$\sum_{k=n+p}^{\infty}\left(\frac{\left[(1-B) k-(1-A) p-(A-B) \alpha_{j}\right.}{(A-B)\left(p-\alpha_{j}\right)}\right) \alpha_{j} \leq 1 ;(j=1,2)$
Then, using Cauchy-Schwarz inequality and following the Principle Mathematical Induction rule we can prove it.

Further, if the function $f_{j}(z)$ are defined by (2.3), then we have

$$
\begin{align*}
& f_{1}(z) * f_{2}(z) * \ldots \ldots f_{m}(z)=z^{p}-\frac{(A-B) \sum_{j=1}^{m}\left(p-\alpha_{j}\right)}{\prod_{j=1}^{m}\left[(1-B) n+(A-B)\left(p-\alpha_{j}\right)\right.} z^{n+p} \\
= & z^{p}-A_{n+p} z^{n+p} \tag{2.12}
\end{align*}
$$

Which shows that

$$
\begin{align*}
& \quad \sum_{k=n+p}^{\infty}\left(\frac{[(1-B) k+(1-A) p-(A-B) \beta}{(A-B)(p-\beta)}\right) A_{k} \\
& =\left(\frac{[(1-B) n+(A-B)(p-\beta)}{(A-B)(p-\beta)}\left\{(A-B) \prod_{j=1}^{m} \frac{\left(p-\alpha_{j}\right)}{\left[(1-B) n+(A-B)\left(p-\alpha_{j}\right)\right.}\right\}\right. \tag{2.13}
\end{align*}
$$

Consequently, the result stated in theorem 1 is sharp for functions $f_{j}(z)$ defined by

Proof of theorem2:

The result is obvious for $m=1$.
For $m=2$, we have to find the largest δ such that
$\sum_{k=n+p}^{\infty}\left\{\left(\frac{k}{p}\right) \frac{[(1-B) k-(1-A) p-(A-B) \delta]}{(A-B)(p-\delta)}\right\} \quad \alpha_{k_{1}} \alpha_{k_{2}} \leq 1$
Using lemma 3 and proceeding and similar lines as in theorem1 we can we prove the theorem 2.

Proof of theorem3: we know that if $f(z) \in T_{p, n}^{*}(A, B, \alpha)$ and $g(z) \in$
$C_{p, n}(A, B, \beta)$,
Then $(f * g)(z) \in C_{p, n}(A, B, \gamma)$, where
γ
$=p$
$-\frac{(1-B)(p-\alpha)(p-\beta)}{[(1-B) n+(A-B)(p-\alpha)][(1-B) n+(A-B)(p-\beta)]-(A-B)(p-\alpha)(p-\beta)}$
Thus theorem1 and theorem2 together lead to the desired result.

3. Special Cases of theorem1

The theorem 1 through 3 is quite integral as they involve general classes of function. For the sake of illustrations, we mention below some interesting(new and known) special theorem for theorem 1 only
(I) Letting $\alpha_{j}=\alpha(j=1, \ldots \ldots m)$ in theorem 1, we get

Corollary1.

If $\boldsymbol{f}_{\boldsymbol{j}}(\mathbf{z}) \in T_{p, n}^{*}(A, B, \alpha) ;(j=1,2, \ldots \ldots m)$, then

$$
\left(f_{1}(z) * f_{2}(z) * \ldots \ldots f_{m}\right)(z) \in T_{p, n}^{*}\left(A, B, \beta^{*}\right)
$$

Where

$$
\begin{equation*}
\beta^{*}=\frac{(1-B)(p-\alpha)^{m}}{[(1-B) n+(A-B)(p-\alpha)]^{m}-(A-B)(p-\alpha)^{m}} \tag{3.1}
\end{equation*}
$$

The result is sharp for functions

$$
\begin{equation*}
f_{j}(z)=z^{p}-\frac{(A-B)\left(p-\alpha_{j}\right) z^{n+p}}{[(1-B) n-(A-B)(p-\alpha)]}(j=1, \ldots m) \tag{3.2}
\end{equation*}
$$

Further, for $m=2, p=1, A=1$ and $\beta=0$, we get the result obtained earlier by srivastava and Chatterjea[8]'
(II) Setting $p=1 ; n=1$ in theorem1, we have

Corollary 2

If $f_{j}(z) \in T_{1,1}^{*}\left(A, B, \alpha_{j}\right) ;(j=1,2, \ldots \ldots m)$, then
$\left(f_{1} * f_{2} * \ldots \ldots f_{m}\right)(z) \in T_{1,1}^{*}\left(A, B, \beta^{1}\right)$, where
$\beta^{\prime}=\frac{(1-B) \prod_{j=1}^{m}\left(1-\alpha_{j}\right)}{\prod_{j=1}^{m}\left[1+A-2 B-(A-B) \alpha_{j}\right]-\prod_{j=1}^{m}\left(1-\alpha_{j}\right)}(3.3)$
$f_{j}(z)=z-(A-B)\left(\frac{1-\alpha_{j}}{(1+A-2 B)-(A-B) \alpha_{j}}\right) z^{2}(j=1, \ldots m)$
Further, for $\mathrm{A}=1, \mathrm{~B}=0$, we get the known result obtained by owa[1], Also for $\mathrm{m}=2$ (with $\mathrm{A}=1, \mathrm{~B}=0$) we arrive at another known result silverman[3].
(III) Again, if we take $\mathrm{A}=1, \mathrm{~B}=0$ in theorem 1-3, we get the result for the classes studied by Tariq[10, p. 159 Eqs (4.5.2) and (4.5.3)] and by owa[2].

Also, taking $\alpha=0$ in theorems 1-3, we get the result for the classes studied by Singh and sohi[6].

Conclusion: In this paper we studied certain classes of MultivalentFunctions, for certain results on Quasi Hadmard products. We also prove the corollary on it, with known and unknown result.

Acknowledgment:

I am very thankful toDr. S. P. Goyal for his expert guidance. I am also thankful to my wife for their support and motivation.

References:

1. OwaS(1993)., On the Hadamard Product of univalent functions, Tamkang J. Math., 14, 15-21.
2. Owa S.,(1985), On the certain classes of p-valent functions with negative coefficients, Simon Stevin,59, 1-15.
3. Schild A., Silverman H.,(1975), Convolutions of univalent functions with negative coefficients Ann. Univ. Marial Curie - Slodowska Sect., 29, 99-107.
4. Seiken T., Nishimoto K., (1986), AN Application of fractional calculus, J. Coll. Engg. NinhonUniv B-27, 31-37.
5. Singh A., Sohi N.S., (1995), On a class of multivalent functions with negative and missing coefficients Pure Appl. Math Sci,13,53-63.
6. Singh A., Sohi N.S., (1995), on certain subclasses of univalent functions, Pure App. 1 Math, Sci, 12, 65-72.
7. Sohi N.S.(1990), Distortion theorems involving certain operators of fractional calculus on the class of p-valent functions, college of Engg. Nihon Univ Fractional calculus and its applications, international conf. proc.
8. Srivastava H.M., Owa S., Chatterja S.K.(1987), A note on certain classes of starlike functions, Rend., Sem. Mat. Univ. Padova, 77,115-124.
9. Srivastava H.M., Saigo M.,Owa S.,()1988), A class of distortion theorems involving certain operators of fractional calculus, J. Math. Analysis \&Appl 2(131),412-420.
10. Tariq O. Salim,(1998), A study of general classes of polynomials, special functions, and integral operators with applications, Ph.D. Thesis, Univ of Raj.
