Vandana Bansal

R S, IKGPT University, Jalandhar; Associate Prof., RG College, Phagwara, Punjab, India.

	ABSTRACT
	The Max- Min Matrix of an intuitionistic fuzzy graph structure (IFGS) \tilde{G} is introduced and derived as $\mathrm{M}(\tilde{G})$ in this paper. Subsequently, the expressions for the
KEYWORDS:	coefficients of the characteristic polynomial of $\mathrm{M}(\tilde{G})$ are
Max-Min Matrix, Max degree matrix, Min degree	also explained explicitly.
matrix.	Copyright © 2018 International Journals of Multidisciplinary Research Academy. All rights reserved.

2010 Mathematics Subject Classification: 05C38, 03F55, 03E72, 05C50, 11C20, 05C72, 05C76.

1. INTRODUCTION With the introduction of fuzzy sets by Prof. Zadeh [8] and intuitionistic fuzzy sets by Atanassov [5], the graph structure was discussed by Sampathkumar [2]. Dinesh and Ramakrishnan [17] contributed fuzzy graph structure. The notion of intuitionistic fuzzy graph structure (IFGS) $\tilde{G}=$ $\left(A, B_{1}, B_{2}, \ldots, B_{k}\right)$ are defined and introduced by the author in [6] ,[7] and [13]. In this paper, Max- Min Matrix of intuitionistic fuzzy graph structure is discussed. Then the coefficients of the characteristic polynomial of $\mathrm{M}(\tilde{G})$ are also defined and explained.
2. II PRELIMINARIES

Some definitions and results that are necessary in this paper are reviewed,

Definition (2.1) [11]: A graph G is a pair of set (V, E), denoted by $G=(\mathrm{V}, \mathrm{E})$, where V is a set of vertices and E is a set of edges. Each edge in E is a pair of vertices in V. Each edge is associated with a set consisting of either one or two vertices called its endpoints.
Definition (2.2) [11]: An edge whose endpoints are the same is called a loop.
Definition (2.3) [11]: A graph without loops and parallel edges is called a simple graph.

Definition (2.4) [2]: $G=\left(V, R_{1}, R_{2}, \ldots, R_{k}\right)$ is a graph structure if V is a non empty set and $R_{1}, R_{2}, \ldots, R_{k}$ are relations on V which are mutually disjoint such that each $R_{i}, i=1,2,3, \ldots, k$, is symmetric and irreflexive.

Definition (2.5) [6]: Let $G=\left(V, R_{1}, R_{2}, \ldots, R_{k}\right)$ be a graph structure and let A be an intuitionistic fuzzy subset (IFS) on V and $B_{1}, B_{2}, \ldots, B_{k}$ are intuitionistic fuzzy relations (IFR) on V which are mutually disjoint, symmetric and irreflexive such that

$$
\mu_{B_{i}}(u, v) \leq \mu_{\mathrm{A}}(u) \wedge \mu_{\mathrm{A}}(v) \text { and } v_{B_{i}}(u, v) \leq v_{A}(u) \vee v_{\mathrm{A}}(v) \quad \forall u, v \in \mathrm{~V} \text { and } i=1,2, \ldots, \mathrm{k} .
$$

Then $\widetilde{G}=\left(\mathrm{A}, \mathrm{B}_{1}, \mathrm{~B}_{2}, \ldots, \mathrm{~B}_{\mathrm{k}}\right)$ is an intuitionistic fuzzy graph structure (IFGS) of G .

III. MAX - MIN MATRIX OF AN INTUITIONISTIC FUZZY GRAPH STRUCTURE

Definition (3.1): Let $\widetilde{G}=\left(\mathrm{A}, \mathrm{B}_{1}, \mathrm{~B}_{2}, \ldots, \mathrm{~B}_{\mathrm{k}}\right)$ be an intuitionistic fuzzy graph structure (IFGS) of G for each vertex i. Define $\alpha_{p}(j)$ and $\beta_{p}(j)$ as follows

$$
\begin{aligned}
& \alpha_{p}(j)=\max \left\{\mu_{B_{p}}(i j), \forall i\right\}, p=1,2, \ldots, k . \\
& \alpha_{1}(j)=\max \left\{\mu_{B_{1}}(1 j), \mu_{B_{1}}(2 j), \mu_{B_{1}}(3 j), \ldots \ldots ., \mu_{B_{1}}(\mathrm{k} j)\right\}, \\
& \alpha_{2}(j)=\max \left\{\mu_{B_{2}}(1 j), \mu_{B_{2}}(2 j), \mu_{B_{2}}(3 j), \ldots \ldots \ldots, \mu_{B_{2}}(\mathrm{k} j)\right\}, \\
& \alpha_{3}(j)=\max \left\{\mu_{B_{3}}(1 j), \mu_{B_{3}}(2 j), \mu_{B_{3}}(3 j), \ldots \ldots \ldots, \mu_{B_{3}}(\mathrm{k} j)\right\},
\end{aligned}
$$

$$
\alpha_{k}(j)=\max \left\{\mu_{B_{k}}(1 j), \mu_{B_{k}}(2 j), \mu_{B_{k}}(3 j), \ldots \ldots \ldots, \mu_{B_{k}}(\mathrm{k} j)\right\}
$$

and similarly,

$$
\begin{aligned}
& \beta_{p}(j)=\min \left\{v_{B_{p}}(i j), \forall i\right\}, p=1,2, \ldots, k . \\
& \beta_{1}(j)=\min \left\{v_{B_{1}}(1 j), v_{B_{1}}(2 j), v_{B_{1}}(3 j), \ldots \ldots, v_{B_{1}}(\mathrm{k} j)\right\}, \\
& \beta_{2}(j)=\min \left\{v_{B_{2}}(1 j), v_{B_{2}}(2 j), v_{B_{2}}(3 j), \ldots \ldots ., v_{B_{2}}(\mathrm{k} j)\right\}, \\
& \beta_{3}(j)=\min \left\{v_{B_{3}}(1 j), v_{B_{3}}(2 j), v_{B_{3}}(3 j), \ldots \ldots ., v_{B_{3}}(\mathrm{k} j)\right\},
\end{aligned}
$$

And

$$
\beta_{k}(j)=\min \left\{v_{B_{k}}(1 j), v_{B_{k}}(2 j), v_{B_{k}}(3 j), \ldots \ldots \ldots, v_{B_{k}}(\mathrm{k} j)\right\}
$$

where $\mu_{B_{p}}(i j)$ represents the strength of relationship between u_{i} and u_{j} and $\nu_{B_{p}}(i j)$ represents the strength of non-relationship between u_{i} and u_{j}.

Remark (3.2): For convenience, here some notations are used.
$\mu_{B_{p}}\left(u_{i}, u_{j}\right)$ is denoted by $\mu_{B_{p}}(i j)$ and $v_{B_{p}}\left(u_{i}, u_{j}\right)$ by $v_{B_{p}}(i j), \quad \forall p=1,2, \ldots, k$.
Definition (3.3): Let $\tilde{G}=\left(\mathrm{A}_{1}, \mathrm{~B}_{1}, \mathrm{~B}_{2}, \ldots, \mathrm{~B}_{\mathrm{k}}\right)$ be given IFGS of G. Two vertices u_{i} and u_{j} are mutually adjacent if there is an edge between u_{i} and u_{j} i.e. there is an edge from u_{i} to u_{j} and there is an edge from u_{j} to u_{i}.
Definition (3.4): Let $\tilde{G}=\left(\mathrm{A}, \mathrm{B}_{1}, \mathrm{~B}_{2}, \ldots, \mathrm{~B}_{\mathrm{k}}\right)$ be an IFGS of G . Three vertices $\mathrm{u}_{\mathrm{i}}, \mathrm{u}_{\mathrm{j}}$ and u_{p} are said to be cyclic if there is an edge from u_{i} to u_{j}, from u_{j} to u_{p} and from u_{p} to u_{i}.

Definition (3.5): Let $\tilde{G}=\left(\mathrm{A}, \mathrm{B}_{1}, \mathrm{~B}_{2}, \ldots, \mathrm{~B}_{\mathrm{k}}\right)$ be an IFGS of G . The B_{p}-Max-Min Matrix Of IFGS \tilde{G} is defined as $\mathrm{M}_{\mathrm{p}}(\tilde{G})=\left[\left(\mathrm{t}_{\mathrm{pij}}, \mathrm{m}_{\mathrm{pij}}\right)\right]$, where $\mathrm{t}_{\mathrm{pij}}=0, \mathrm{~m}_{\mathrm{pij}}=0 \forall \mathrm{i}=\mathrm{j}$ and for $\mathrm{i} \neq \mathrm{j}$, $\mathrm{t}_{\mathrm{pj}}=\left\{\begin{array}{ccc}\max \left(\alpha_{p}(i), \alpha_{p}(j)\right) & \text { if } & \mu_{B_{p}}(i j) \neq 0, \forall \mathrm{p} \\ 0 & \text { if } & \mu_{B_{p}}(i j)=0, \forall \mathrm{p}\end{array}\right\}$ and $m_{\mathrm{pjj}}=\left\{\begin{array}{lll}\min \left(\beta_{p}(i), \beta_{p}(j)\right) & \text { if } & v_{B_{p}}(i j) \neq 0, \forall \mathrm{p} \\ 0 & \text { if } & v_{B_{p}}(i j)=0, \forall \mathrm{p}\end{array}\right\}$

Definition (3.6): Let $\tilde{G}=\left(\mathrm{A}_{,} \mathrm{B}_{1}, \mathrm{~B}_{2}, \ldots, \mathrm{~B}_{\mathrm{k}}\right)$ be an IFGS of G . The Max-Min Matrix Of \tilde{G} is defined as $\mathrm{M}(\tilde{G})=\left[\left(\max \left(\mathrm{t}_{\mathrm{pij}}\right), \min \left(\mathrm{m}_{\mathrm{pij}}\right)\right)\right]=\left[\left(\mathrm{t}_{\mathrm{ij}}, \mathrm{m}_{\mathrm{ij}}\right)\right]$.

Definition (3.7): Max-Min Matrix Of \tilde{G} consists of two different matrices one containing the entries as membership values and the other containing the entries as non-membership values as $\mathrm{M}(\tilde{G})=\left[\left(\max \left(\mathrm{t}_{\mathrm{pij}}\right), \min \left(\mathrm{m}_{\mathrm{pij}}\right)\right)\right]=\left[\left(\mathrm{t}_{\mathrm{ij}}, \mathrm{m}_{\mathrm{ij}}\right)\right]$ where the matrix containing the entries as membership values are termed as Max degree matrix of intuitionistic fuzzy graph structure and is denoted by $\mathrm{T}=\left[\mathrm{t}_{\mathrm{ij}}\right]$ and the matrix containing the entries as nonmembership values are termed as Min degree matrix of intuitionistic fuzzy graph structure and is denoted by $\mathrm{N}=\left[\mathrm{m}_{\mathrm{ij}}\right]$.

Example (3.8): Take example of link structure of a website and represent it by directed IFGS. The links are considered as vertices and the path between the links are considered as edges. The strength of each edge is taken as the membership value and the non- strength as non-membership value. Suppose an IFGS $\tilde{G}=\left(\mathrm{A}, \mathrm{B}_{1}, \mathrm{~B}_{2}\right)$ as displayed in the following diagram.

$\mathrm{M}(\widetilde{G})=\left[\left(\mathrm{t}_{\mathrm{ij}}, \mathrm{m}_{\mathrm{ij}}\right)\right]$,
$\therefore \mathrm{M}(\tilde{G})=\left[\begin{array}{cccc}(0,0) & \left(\mathrm{t}_{12}, \mathrm{~m}_{12}\right) & \left(\mathrm{t}_{13}, \mathrm{~m}_{13}\right) & \left(\mathrm{t}_{14}, \mathrm{~m}_{14}\right) \\ \left(\mathrm{t}_{21}, \mathrm{~m}_{21}\right) & (0,0) & \left(\mathrm{t}_{23}, \mathrm{~m}_{23}\right) & \left(\mathrm{t}_{24}, \mathrm{~m}_{24}\right) \\ \left(\mathrm{t}_{31}, \mathrm{~m}_{31}\right) & \left(\mathrm{t}_{32}, \mathrm{~m}_{32}\right) & (0,0) & \left(\mathrm{t}_{34}, \mathrm{~m}_{34}\right) \\ \left(\mathrm{t}_{41}, \mathrm{~m}_{41}\right) & \left(\mathrm{t}_{42}, \mathrm{~m}_{42}\right) & \left(\mathrm{t}_{43}, \mathrm{~m}_{43}\right) & (0,0)\end{array}\right] \quad$ where
$T=\left[\begin{array}{cccc}0 & \mathrm{t}_{12} & \mathrm{t}_{13} & \mathrm{t}_{14} \\ \mathrm{t}_{21} & 0 & \mathrm{t}_{23} & \mathrm{t}_{24} \\ \mathrm{t}_{31} & \mathrm{t}_{32} & 0 & \mathrm{t}_{34} \\ \mathrm{t}_{41} & \mathrm{t}_{42} & \mathrm{t}_{43} & 0\end{array}\right] \quad$ and $\quad \mathrm{N}=\left[\begin{array}{cccc}0 & m_{12} & m_{13} & m_{14} \\ m_{21} & 0 & m_{23} & m_{24} \\ m_{31} & m_{32} & 0 & m_{34} \\ m_{41} & m_{42} & m_{43} & 0\end{array}\right]$
Here in this example, $\mathrm{M}_{1}(\tilde{G})=\left[\begin{array}{cccc}(0,0) & (0.7,0.1) & (0.5,0.1) & (0.5,0.4) \\ (0.7,0.1) & (0,0) & (0.7,0.1) & (0.7,0.1) \\ (0.5,0.2) & (0.7,0.2) & (0,0) & (0.4,0.2) \\ (0.5,0.4) & (0.7,0.1) & (0.4,0.2) & (0,0)\end{array}\right]$

$$
\text { and } \mathrm{M}_{2}(\tilde{G})=\left[\begin{array}{cccc}
(0,0) & (0.8,0.1) & (0.8,0.1) & (0.8,0.1) \\
(0.8,0.1) & (0,0) & (0.8,0.1) & (0.8,0.1) \\
(0.8,0.1) & (0.8,0.1) & (0,0) & (0.3,0.5) \\
(0.8,0.1) & (0.8,0.1) & (0.3,0.5) & (0,0)
\end{array}\right]
$$

$\therefore \mathrm{M}(\tilde{G})=\left[\begin{array}{cccc}(0,0) & (0.8,0.1) & (0.8,0.1) & (0.8,0.1) \\ (0.8,0.1) & (0,0) & (0.8,0.1) & (0.8,0.1) \\ (0.8,0.1) & (0.8,0.1) & (0,0) & (0.4,0.2) \\ (0.8,0.1) & (0.8,0.1) & (0.4,0.2) & (0,0)\end{array}\right] \quad$ where
$T=\left[\begin{array}{cccc}0 & 0.8 & 0.8 & 0.8 \\ 0.8 & 0 & 0.8 & 0.8 \\ 0.8 & 0.8 & 0 & 0.4 \\ 0.8 & 0.8 & 0.4 & 0\end{array}\right] \quad$ and $\quad N=\left[\begin{array}{cccc}0 & 0.1 & 0.1 & 0.1 \\ 0.1 & 0 & 0.1 & 0.1 \\ 0.1 & 0.1 & 0 & 0.2 \\ 0.1 & 0.1 & 0.2 & 0\end{array}\right]$

Result (3.9): Let $\mathrm{M}(\tilde{G})=\left[\left(\mathrm{t}_{\mathrm{ij}}, \mathrm{m}_{\mathrm{ij}}\right)\right]$, where $\mathrm{T}=\left[\mathrm{t}_{\mathrm{ij}}\right], \mathrm{N}=\left[\mathrm{m}_{\mathrm{ij}}\right]$. The characteristic polynomial of T and N is an equation of order n if G has n vertices.

Note (3.10): In this paper, only the polynomial of order 4 will be used.
Remark (3.11): The characteristic polynomial of T of order 4 is $a_{0} \lambda^{4}-a_{1} \lambda^{3}+a_{2} \lambda^{2}-a_{3} \lambda+a_{4}=0$, where $\mathrm{a}_{0}=1, \mathrm{a}_{1}=\operatorname{tr}(\mathrm{T}), a_{2}=\frac{1}{2}\left[(\operatorname{tr}(T))^{2}-\left(\operatorname{tr}\left(T^{2}\right)\right], a_{3}=\frac{1}{6}\left[(\operatorname{tr}(T))^{3}-3\left(\operatorname{tr}\left(T^{2}\right) \operatorname{tr}(T)+2 \operatorname{tr}\left(T^{3}\right)\right], \quad \mathrm{a}_{4}=\right.\right.$ $\operatorname{det}(\mathrm{T})$.

Remark (3.12): The characteristic polynomial of matix N as $\mathrm{b}_{0} \delta^{4}-\mathrm{b}_{1} \delta^{3}+\mathrm{b}_{2} \delta^{2}-\mathrm{b}_{3} \delta+\mathrm{b}_{4}=0$, where $\mathrm{b}_{0}=1, \mathrm{~b}_{1}=\operatorname{tr}(\mathrm{N}), b_{2}=\frac{1}{2}\left[(\operatorname{tr}(N))^{2}-\left(\operatorname{tr}\left(N^{2}\right)\right], \mathrm{b}_{3}=\frac{1}{6}\left[(\operatorname{tr}(N))^{3}-3\left(\operatorname{tr}\left(N^{2}\right) \operatorname{tr}(N)+2 \operatorname{tr}\left(N^{3}\right)\right], \mathrm{b}_{4}=\right.\right.$ $\operatorname{det}(\mathrm{N})$

Now to see the explicit expressions for the coefficients of a_{2}, a_{3}, b_{2} and b_{3}.
Lemma (3.13): In the characteristic polynomial of $\mathrm{T}, a_{2}=-\sum_{1 \leq i<j \leq n}\left(\mathrm{t}_{\mathrm{ij}}\right)^{2}$ such that the vertices u_{i} and u_{j} are mutually adjacent.

Proof: Generally $a_{2}=\frac{1}{2}\left[(\operatorname{tr}(T))^{2}-\left(\operatorname{tr}\left(T^{2}\right)\right]\right.$, (from Remark (3.11),

If the vertices u_{i} and u_{j} are mutually adjacent, then $t_{i j}=t_{\mathrm{ji}}$ otherwise any one of $t_{i j}$ or t_{ji} will be zero.
$\therefore a_{2}=\sum_{1 \leq i<j \leq n}\left|\begin{array}{cc}0 & t_{i j} \\ t_{\mathrm{ij}} & 0\end{array}\right|=\left|\begin{array}{cc}0 & t_{12} \\ t_{21} & 0\end{array}\right|+\left|\begin{array}{cc}0 & t_{13} \\ t_{31} & 0\end{array}\right|+\left|\begin{array}{cc}0 & t_{14} \\ t_{41} & 0\end{array}\right|+\left|\begin{array}{cc}0 & t_{23} \\ t_{32} & 0\end{array}\right|+\left|\begin{array}{cc}0 & t_{24} \\ t_{42} & 0\end{array}\right|+\left|\begin{array}{cc}0 & t_{34} \\ t_{43} & 0\end{array}\right|$
$=-\left[\mathrm{t}_{12} \mathrm{t}_{21}+\mathrm{t}_{13} \mathrm{t}_{31}+\mathrm{t}_{14} \mathrm{t}_{41}+\mathrm{t}_{23} \mathrm{t}_{32}+\mathrm{t}_{24} \mathrm{t}_{42}+\mathrm{t}_{34} \mathrm{t}_{43}\right]$
$\therefore a_{2}=-\sum_{1 \leq i<i j \leq n}\left(\mathrm{t}_{\mathrm{i}}\right)^{2} \quad$ if the vertices u_{i} and u_{j} are mutually adjacent.

Cor (3.14): In the characteristic polynomial of $\mathrm{N}, b_{2}=\sum_{1 \leq i i j \leq n}\left(m_{\mathrm{ij}}\right)^{2}$ such that the vertices u_{i} and u_{j} are mutually adjacent.
Proof: Generally $b_{2}=\frac{1}{2}\left[(\operatorname{tr}(N))^{2}-\left(\operatorname{tr}\left(N^{2}\right)\right]\right.$,
(from Remark
(3.12),

If the vertices u_{i} and u_{j} are mutually adjacent, then $m_{i j}=m_{j i}$ otherwise any one of $m_{i j}$ or m_{ji} will be zero.
$\therefore \mathrm{b}_{2}=\sum_{1 \leq i<j \leq n}\left|\begin{array}{cc}0 & m_{\mathrm{ij}} \\ m_{\mathrm{ij}} & 0\end{array}\right|=\left|\begin{array}{cc}0 & m_{12} \\ m_{21} & 0\end{array}\right|+\left|\begin{array}{cc}0 & m_{13} \\ m_{31} & 0\end{array}\right|+\left|\begin{array}{cc}0 & m_{14} \\ m_{41} & 0\end{array}\right|+\left|\begin{array}{cc}0 & m_{23} \\ m_{32} & 0\end{array}\right|+\left|\begin{array}{cc}0 & m_{24} \\ m_{42} & 0\end{array}\right|+\left|\begin{array}{cc}0 & m_{34} \\ m_{43} & 0\end{array}\right|$
$=-\left[\mathrm{m}_{12} \mathrm{~m}_{21}+\mathrm{m}_{13} \mathrm{~m}_{31}+\mathrm{m}_{14} \mathrm{~m}_{41}+\mathrm{m}_{23} \mathrm{~m}_{32}+\mathrm{m}_{24} \mathrm{~m}_{42}+\mathrm{m}_{34} \mathrm{~m}_{43}\right]$
$\therefore b_{2}=\sum_{1 \leq i<j \leq n}\left(m_{\mathrm{ij}}\right)^{2} \quad$ if the vertices u_{i} and u_{j} are mutually adjacent.
Lemma (3.15): In the characteristic polynomial of $T, a_{3}=\sum_{1 \leq i<j \leq i n} t_{i j} \mathrm{t}_{\mathrm{jp}} \mathrm{t}_{\mathrm{pi}} \quad$ where the summation is taken over all i, j and p if the vertices $\mathrm{u}_{\mathrm{i}}, \mathrm{u}_{\mathrm{j}}$ and u_{p} are cyclic in \tilde{G}

Proof: From Remark (3.11), $a_{3}=\frac{1}{6}\left[(\operatorname{tr}(T))^{3}-3\left(\operatorname{tr}\left(T^{2}\right) \operatorname{tr}(T)+2 \operatorname{tr}\left(T^{3}\right)\right]\right.$,
$\therefore a_{2}=\sum_{1 \leq i<j<p \leqslant n}\left|\begin{array}{lll}t_{\mathrm{ii}} & t_{\mathrm{ij}} & t_{\mathrm{ip}} \\ t_{\mathrm{ji}} & t_{\mathrm{ij}} & t_{\mathrm{jp}} \\ t_{\mathrm{pi}} & t_{\mathrm{pj}} & t_{\mathrm{pp}}\end{array}\right|$
$=-\left[\mathrm{t}_{12} \mathrm{t}_{23} \mathrm{t}_{31}+\mathrm{t}_{12} \mathrm{t}_{24} \mathrm{t}_{41}+\mathrm{t}_{13} \mathrm{t}_{34} \mathrm{t}_{41}+\mathrm{t}_{13} \mathrm{t}_{32} \mathrm{t}_{21}+\mathrm{t}_{14} \mathrm{t}_{43} \mathrm{t}_{31}+\mathrm{t}_{14} \mathrm{t}_{42} \mathrm{t}_{21}+\mathrm{t}_{23} \mathrm{t}_{34} \mathrm{t}_{42}+\mathrm{t}_{24} \mathrm{t}_{43} \mathrm{t}_{32}\right]$
-- (2)
If the vertices $\mathrm{u}_{\mathrm{i}}, \mathrm{u}_{\mathrm{j}}$ and u_{p} are cyclic in \tilde{G}, then $a_{3}=\sum_{1 \leq i<j<p \leq n} \mathrm{t}_{\mathrm{ij}} \mathrm{t}_{\mathrm{p} \mathrm{p}} \mathrm{t}_{\mathrm{p}} \quad$ otherwise any one of t_{ij} or t_{jp} or t_{pi} will be zero.
\therefore (2) becomes $a_{3}=\sum_{1 \leq i \lll p \leq n} \mathrm{t}_{\mathrm{ij}} \mathrm{t}_{\mathrm{jp}} \mathrm{t}_{\mathrm{pi}}$ where the summation is taken over all i, j and p if the vertices $\mathrm{u}_{\mathrm{i}}, \mathrm{u}_{\mathrm{j}}$ and u_{p} are cyclic in \widetilde{G}.
Cor (3.16): In the characteristic polynomial of $\mathrm{N}, b_{3}=\sum_{1 \leq i i j \leq n} m_{\mathrm{ij}} m_{\mathrm{jp}} m_{\mathrm{pi}} \quad$ where the summation is taken over all i, j and p if the vertices $\mathrm{u}_{\mathrm{i}}, \mathrm{u}_{\mathrm{j}}$ and u_{p} are cyclic in \tilde{G}

Proof: From Remark (3.12), $\mathrm{b}_{3}=\frac{1}{6}\left[(\operatorname{tr}(N))^{3}-3\left(\operatorname{tr}\left(N^{2}\right) \operatorname{tr}(N)+2 \operatorname{tr}\left(N^{3}\right)\right]\right.$,
$\therefore \mathrm{b}_{2}=\sum_{1 \leq i \lll p \leq n}\left|\begin{array}{lll}m_{\mathrm{ii}} & m_{\mathrm{ij}} & m_{\mathrm{ip}} \\ m_{\mathrm{ji}} & m_{\mathrm{jj}} & m_{\mathrm{jp}} \\ m_{\mathrm{pi}} & m_{\mathrm{pj}} & m_{\mathrm{pp}}\end{array}\right|$
$=-\left[m_{12} m_{23} m_{31}+m_{12} m_{24} m_{41}+m_{13} m_{34} m_{41}+m_{13} m_{32} m_{21}+m_{14} m_{43} m_{31}+m_{14} m_{42} m_{21}+m_{23}\right.$
$\left.\mathrm{m}_{34} \mathrm{~m}_{42}+\mathrm{m}_{24} \mathrm{~m}_{43} \mathrm{~m}_{32}\right] \quad$--- (2)
If the vertices $\mathrm{u}_{\mathrm{i}}, \mathrm{u}_{\mathrm{j}}$ and u_{p} are cyclic in \tilde{G}, then $b_{3}=\sum_{1 \leq i<j \leq \leq n} m_{\mathrm{ij}} m_{\mathrm{jp}} m_{\mathrm{pi}} \quad$ otherwise any one of m_{ij} or m_{jp} or m_{pi} will be zero.
\therefore (2) becomes $b_{3}=\sum_{1 \leq i j i \leq \leq n} m_{\mathrm{ij}} m_{\mathrm{jp}} m_{\mathrm{pi}} \quad$ where the summation is taken over all i, j and p if the vertices $\mathrm{u}_{\mathrm{i}}, \mathrm{u}_{\mathrm{j}}$ and u_{p} are cyclic in \tilde{G}.

IV. CONCLUSION

In the present paper, the max-min matrix of intuitionistic fuzzy graph structure is introduced. It can be further used in the development of new concepts related to Max- min matrix of intuitionistic fuzzy graph structure.

REFERENCES

[1]. A. Kauffman, Introduction a la Theorie des Sous-emsemblesFlous, MassonetCie, Vol.1, 1973.
[2]. E. Sampatkumar, Generalized Graph Structures, Bulletin of Kerala Mathematics Association, Vol. 3, No.2, (December 2006), 67-123.
[3]. John N. Mordeson, Premchand S. Nair, Fuzzy Mathematics: An Introduction for Engineers and Scientists, Springer- Verlag Company,1998.
[4]. J.N.Mordeson \& P.S.Nair, Fuzzy Graphs \& Fuzzy Hypergraphs, Physica-verlag,2000
[5]. K.T.Atanassov, Intuitionistic Fuzzy sets, Theory and application, Physica, New York 1999.
[6]. P.K.Sharma, Vandana Bansal, On Intuitionistic fuzzy Graph Structures, IOSR Journal of Mathematics, Vol. 12, Issue 5 Ver. I (Sep. - Oct.2016), 28-33.
[7]. P.K.Sharma, Vandana Bansal, Some elementary operations on Intuitionistic fuzzy Graph Structures, International Journal for Research in Applied Science \& Engineering Technology (IJRASET) , Vol. 5, Issue VIII, August.2017, 240-255.
[8]. L.A. Zadeh , Fuzzy Sets, Information and Control, 8, 1965, 338-353.
[9]. A. Rosenfeld, Fuzzy Graphs, Fuzzy Sets and their Applications to Cognitive and Decision Process in: L.A. Zadeh, K.S. Fu. M. Shimura (Eds), Academic Press, New York, 1975, 77-95.
[10]. G. Deepa, B. Prabha, V. M. Chandrasekaran Max Min Intuitionistic Fuzzy Matrix Of Intuitionistic Fuzzy Graph, International Journal of Pure and Applied Mathematics, Volume 98, Number 3 ,2015, 375-387.
[11]. G. Deepa, B. Prabha, V. M. Chandrasekaran Virus Spread in an Intuitionistic Fuzzy Network, International Journal of Applied Engineering Research, Volume 9, Number 16 ,2014, 5507-5515.
[12]. R. Parvathi, M. G. Karunambigai, Intuitionistic Fuzzy Graphs, Journal of Computational Intelligence, Theory and Applications, 20, 2006, 139-150.
[13]. Vandana Bansal, P.K. Sharma, ϕ-complement of Intuitionistic fuzzy Graph Structures, International Mathematical Forum, Vol. 12, 2017, no. 5, 241 - 250.
[14]. P.K. Sharma, Vandana Bansal, Self Centeredness in Intuitionistic Fuzzy Graph Structure, International Journal of Engineering, Science and Mathematics, Vol. 6 Issue 5, September 2017, ISSN: 2320-0294, Impact Factor: 6.765, pp.124-134.
[15]. P.K. Sharma, Vandana Bansal, Bridges and cut-vertices of Intuitionistic Fuzzy Graph Structure, International Journal of Engineering, Science and Mathematics, Vol. 6 Issue 8, December 2017, ISSN: 2320-0294, Impact Factor: 6.765, pp.349-358.
[16]. Vandana Bansal, Spectrum of Intuitionistic Fuzzy Graph Structure, International Journal of Engineering, Science and Mathematics (Communicated).
[17]. T. Dinesh and T. V. Ramakrishnan , On Generalized fuzzy Graph Structures, Applied Mathematical Sciences, Vol. 5, No. 4, 2011, 173 - 180.

