ON THE ABSOLUTE ψ - SUMMABILITY FACTORS OF THE INFINITE SERIES

DHIRENDRA SINGH

Department of Mathematics

Govt. (P.G.) College RamNagar, Nainital, Uttrakhand - 244715

ABSTRACT

In this paper is to prove a more general theorem of BOR [1] for absolute ψ summability factor of the infinite series.

DEFINITIONS AND NOTATIONS

Let $A=\left(a_{n, k}\right)$ be an infinite matrix of complex numbers $a_{n k}(n k=1,2,3, \ldots \ldots .$.$) and let \left(\psi_{n}\right)$ be a sequence of complex numbers. Let $\sum a_{n}$ be a given infinite series with the sequence of partial sums $\left(s_{n}\right)$. By $A_{n}(s)$ we denote the A-transform of the sequence $s=\left(s_{k}\right)$, that is

$$
A_{n}(s)=\sum_{k=1}^{\infty} a_{n k} s_{k}
$$

The series $\sum a_{n}$ is said to be Summable $|A|$, if

$$
\sum_{n=1}^{\infty}\left|A_{n}(s)-A_{n-1}(s)\right|<\infty
$$

And it is said to be Summable $\psi-|A|_{k} k \geq 1$, if

$$
\sum_{n=1}^{\infty}\left|\psi_{n}\left[A_{n}(s)-A_{n-1}(s)\right]\right|, k<\infty
$$

If we take $\psi_{n}=n^{1-k^{-1}}\left(\right.$ resp $\left.\psi_{n}=n^{\delta+1-k^{-1}}, \delta \geq 0\right)$,
Then $\psi-|A|_{k}$ Summability is the same as $|A|_{k}\left(\operatorname{resp}|A: \delta|_{K}\right)$ Summability.

INTRODUCTION

In 1965 Mishra [4] proved the following theorems :
THEOREM A : Let $\left(\lambda_{n}\right)$ be a convex sequence such that $\sum \frac{\lambda_{n}}{n}$ is convergent, if $\sum a_{n}$ is bounded $\left|R, \log _{n}, 1\right|_{k}$, then $\sum a_{n} \lambda_{n}$ is Summable $|c, 1|_{k} k \geq 1$ Generalizing the above theorem MISHRA AND SRIVASTAVA [5] proved the following theorem.

THEOREM B : Let $\left(\chi_{n}\right)$ be a positive non - decreasing sequence and there be sequences $\left(\beta_{n}\right)$ and $\left(\varepsilon_{n}\right)$ such that

$$
\begin{aligned}
& \left|\Delta \varepsilon_{n}\right| \leq \beta_{n} \\
& \beta_{n} \rightarrow \infty \quad \text { as } n \rightarrow \infty \\
& \sum_{n=1}^{\infty} n\left|\Delta \beta_{n}\right| \chi_{n}<\infty \\
& \left|\varepsilon_{n}\right| \chi_{n}=o(1) \\
& \text { If } \sum_{v=1}^{n} \frac{\left|s_{v}\right|_{k}}{v}=o\left(\chi_{n}\right)
\end{aligned}
$$

For $k \geq 1$ then $\sum a_{n} \varepsilon_{n}$ is Summable $|c, 1|_{k}$. recently BOR [1] generalized the above theorem their theorem is as follows :

THEOREM C : Let $\left(\lambda_{n}\right)_{\text {be a positive non }- \text { decreasing sequence and the sequences }}$ $\left(\beta_{n}\right)$ and $\left(\varepsilon_{n}\right)$ are such that conditions

$$
\left|\Delta \varepsilon_{n}\right| \leq \beta_{n}
$$

$$
\begin{aligned}
& \beta_{n} \rightarrow \infty \text { as } n \rightarrow \infty \\
& \sum_{n=1}^{\infty} n\left|\Delta \beta_{n}\right| \chi_{n}<\infty \\
& \left|\varepsilon_{n}\right| \chi_{n}=o(1)
\end{aligned}
$$

Are satisfied . if there exists $\varepsilon>0$ such that sequence $\left(n^{\varepsilon-k}\left|\psi_{n}\right|^{k}\right)$ is non- increasing and

$$
\sum_{v=1}^{n} v^{\varepsilon-k}\left|\psi_{v} s_{v}\right|^{k}=o\left(\chi_{n}\right) \quad \text { as } n \rightarrow \infty
$$

Then the series $\sum a_{n} \lambda_{n}$ is Summable $\psi-|c, 1|_{k} . k \geq 1$

The object of this Paper is to prove a more general theorem than the above theorems. however, we shall prove the following theorem :

THEOREM : Let $\left(\chi_{n}\right)$ be a positive non - decreasing sequence and the sequences $\left(\beta_{n}\right)$ and $\left(\lambda_{n}\right)$ satisfy the following conditions.

$$
\begin{align*}
& \left|\Delta \lambda_{n}\right| \leq \beta_{n} \tag{1}\\
& \beta_{n} \rightarrow \infty \quad \text { as } n \rightarrow \infty \tag{2}\\
& \sum_{n=1}^{\infty} n\left|\Delta \beta_{n}\right| \chi_{n}<\infty \tag{3}\\
& \left|\lambda_{n}\right| \chi_{n}=o(1) \tag{4}
\end{align*}
$$

Moreover, if $\varepsilon>0$ is such that the sequence $\left(n^{\varepsilon-k}\left|\psi_{n}\right|^{k}\right)$ is non- increasing and

$$
\begin{equation*}
\sum_{v=1}^{n} \frac{\left|\psi_{v} s_{v}\right|}{v}=o(1)\left(\chi_{n} \mu_{n}\right) \text { as } n \rightarrow \infty \tag{5}
\end{equation*}
$$

Where $\left\{\mu_{n}\right\}$ is positive non- increasing sequence and satisfies

$$
\begin{equation*}
n \chi_{n} \mu_{n} \Delta\left(\frac{1}{\mu_{n}}\right)=o(1) \quad \text { as } n \rightarrow \infty \tag{6}
\end{equation*}
$$

Then the series $\sum \frac{a_{n} \lambda_{n}}{\mu_{n}}$ is Summable $\psi-|c, 1|$. It should be noted that our theorem also give results of BOR [1] for $k=1$

We need the following lemma for the proof of our theorem

Lemma 1 : Under the condition on $\left(\chi_{n}\right),\left(\beta_{n}\right)$ and $\left(\lambda_{n}\right)$ as taken in the statement of the above theorem the following conditions hold, when (3) is satiesfied

$$
\begin{equation*}
n \beta_{n} \lambda_{n}=o(1) \tag{7}
\end{equation*}
$$

And

$$
\begin{equation*}
\sum_{n=1}^{\infty} \beta_{n} \chi_{n}<\infty \tag{8}
\end{equation*}
$$

* PROOF OF THE THEOREMS *

Let u_{n} and t_{n} be with Cesāro means of order 1 of series $\sum a_{n}$ and of the sequence $\left(n, a_{n}\right)$ respectively. Since $t_{n}=\left(u_{n}-u_{n-1}\right)_{\text {(see [2]) it is enough to show that }}$

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n}\left|\psi_{n} T_{n}\right|<\infty \tag{9}
\end{equation*}
$$

Where

$$
T_{n}=-\frac{1}{n+1} \sum_{v=1}^{n} \frac{v a_{v} \lambda_{v}}{\mu_{v}}
$$

By Abel's transformation we get.

$$
\begin{align*}
& T_{n}=\frac{1}{n+1} \sum_{v=1}^{n-1} s_{v} \Delta\left(\frac{v \lambda_{v}}{\mu_{v}}\right)+\frac{1}{n+1} \frac{s_{n} n \lambda_{n}}{\mu_{n}}-\frac{s_{0} \lambda_{1}}{(n+1) \mu_{1}} \\
& T_{n}=\frac{1}{n+1}\left[\sum_{v=1}^{n-1} s_{v} \frac{v \Delta \lambda_{v}}{\mu_{v}}+\frac{\lambda_{v+1}}{\mu+1}+v \lambda_{v+1} \Delta\left(\frac{1}{\mu}\right)\right]+\frac{1}{n+1} s_{n} \frac{n \lambda_{n}}{\mu_{n}}-\frac{1}{n+1} s_{0} \frac{\lambda_{1}}{\mu_{1}} \\
& T_{n}=\frac{1}{n+1} \sum_{v=1}^{n-1} s_{v} \frac{v \Delta \lambda_{v}}{\mu_{v}}-\frac{1}{n+1} \sum_{v=1}^{n-1} s_{v} \frac{\lambda_{v+1}}{\mu_{v+1}}+\frac{1}{n+1} \sum_{v=1}^{n-1} s_{v} v \lambda_{v+1} \Delta\left(\frac{1}{\mu_{v}}\right)+\frac{1}{n+1} s_{n} \frac{n \lambda_{n}}{\mu_{n}}-\frac{1}{n+1} s_{0} \frac{\lambda_{1}}{\mu_{1}} \\
& T_{n}=T_{n, 1}+T_{n, 2}+T_{n, 3}+T_{n, 4}+T_{n, 5} \tag{say}
\end{align*}
$$

To complete the proof of the theorem, by Minkowski Inequality it is sufficient to show that

$$
\begin{gather*}
\sum_{n=1}^{\infty} \frac{1}{n}\left|\psi_{n} T_{n, r}\right|<\infty \quad \text { for } r=1,2,3,4,5 \tag{10}\\
\begin{aligned}
& \sum_{n=2}^{m+1} \frac{1}{n}\left|\psi_{n} T_{n, 1}\right| \leq \sum_{n=2}^{m+1} \frac{\left|\psi_{n}\right|}{n^{2}}\left\{\sum_{v=1}^{n-1}\left|\frac{v \Delta \lambda_{v}}{\mu}\right|\left|s_{v}\right|\right\} \\
&=o(1) \sum_{v=1}^{m}\left|\frac{v \Delta \lambda_{v}}{\mu_{v}}\right|\left|s_{v} \psi_{v}\right| v^{\varepsilon-1} \int_{v}^{\infty} \frac{1}{x^{\varepsilon+1}} d x \\
&=o(1) \sum_{v=1}^{m}\left|\frac{v \Delta \lambda_{v}}{\mu_{v}}\right|\left|s_{v} \psi_{v}\right| v^{-1} \\
& \leq o(1) \sum_{v=1}^{m} \frac{v \beta_{v}}{\mu_{v}}\left|s_{v} \psi_{v}\right| v^{-1}
\end{aligned}
\end{gather*}
$$

In view of (1)
Applying partial summation to (11) that is to say, we have

$$
\sum_{v=1}^{n} \frac{v \beta_{v}}{\mu_{v}}\left|\frac{\psi_{v} s_{v}}{v}\right|=o(1) \sum_{v=1}^{m-1} \Delta\left(\frac{v \beta_{v}}{\mu_{v}}\right) \sum_{r=1}^{v} \frac{\left|\psi_{v} s_{r}\right|}{r}+\frac{m \beta_{m}}{\mu_{m}} \sum_{v=1}^{m} \frac{\left|\psi_{v} s_{v}\right|}{v}
$$

Vol. 7 Issue 6, June 2018,
ISSN: 2320-0294 Impact Factor: 6.765
Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed \& Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

$$
\begin{aligned}
&= o(1) \sum_{v=1}^{m-1}\left\{\Delta^{2} \frac{v \beta_{v}}{\mu_{v}}+\frac{\Delta \beta_{v}}{\mu_{v}}+\Delta \beta_{v} v \Delta\left(\frac{1}{\mu_{v}}\right)\right\} \sum_{r=1}^{v} \frac{\left|\psi_{r} s_{r}\right|}{r} \\
&+\frac{m \beta_{m}}{\mu_{m}} \sum_{v=1}^{m} \frac{\left|\psi_{v} s_{v}\right|}{v} \\
&= o(1) \sum_{v=1}^{m-1} \frac{\Delta^{2} \beta_{v} v}{\mu_{v}} \sum_{r=1}^{v} \frac{\left|\psi_{r} s_{r}\right|}{r}+o(1) \sum_{v=1}^{m-1} \frac{\Delta \beta_{v}}{\mu_{v}} \sum_{r=1}^{v} \frac{\left|\psi_{r} s_{r}\right|}{r} \\
&+o(1) \sum_{v=1}^{m-1} \Delta \beta_{v} v \Delta\left(\frac{1}{\mu_{v}}\right) \sum_{r=1}^{v} \frac{\left|\psi_{r} s_{r}\right|}{r}+\frac{m \beta_{m}}{\mu_{m}} \sum_{v=1}^{m} \frac{\left|\psi_{v} s_{v}\right|}{v}=o(1) \sum_{v=1}^{m-1} \frac{\Delta^{2} \beta_{v} v}{\mu_{v}} \chi_{v} \mu_{v}+o(1) \sum_{v=1}^{m-1} \frac{\Delta \beta_{v} v}{\mu_{v}} \chi_{v} \mu_{v} \\
&+o(1) \sum_{v=1}^{m-1} \Delta \beta_{v} v \Delta\left(\frac{1}{\mu_{v}}\right) \chi_{v} \mu_{v}+\frac{m \beta_{m}}{\mu_{m}} \chi_{m} \mu_{m} \\
&= o(1) \sum_{v=1}^{m-1} \Delta^{2} \beta_{v} \cdot v+o(1) \sum_{v=1}^{m-1} \Delta \beta_{v} \chi_{v} \mu_{v}+o(1) \sum_{v=1}^{m-1} \Delta \beta_{v} v+m \beta_{m} \chi_{m} \\
& \sum_{v=1}^{n} \frac{v \beta_{v}}{\mu_{v}}\left|\frac{\psi_{v} s_{v}}{v}\right|=o(1)+o(1)+o(1)+o(1)
\end{aligned}
$$

In view of (3), (4), (6), (7) and (8)
Hence

$$
\sum_{n=2}^{m+1} \frac{1}{n}\left|\psi_{n} T_{n, 1}\right|=o(1) \quad \text { as } m \rightarrow \infty
$$

Again

$$
\begin{aligned}
\sum_{n=2}^{m+1} \frac{1}{n}\left|\psi_{n} T_{n, 2}\right| & \leq \sum_{n=2}^{m+1} \frac{1}{n^{2}}\left|\psi_{n}\right|\left\{\sum_{v=1}^{n-1}\left|s_{v}\right|\left|\frac{\lambda_{v+1}}{\mu_{v+1}}\right|\right\} \\
& =\sum_{v=1}^{m}\left|\frac{\lambda_{v+1}}{\mu_{v+1}}\right|\left|s_{v}\right| \sum_{n=v+1}^{m+1} \frac{\left|\psi_{n}\right|}{n^{2}} \\
& =o(1) \sum_{v=1}^{m}\left|\frac{\lambda_{v+1}}{\mu_{v+1}}\right|\left|s_{v} \psi_{v}\right| v^{\varepsilon-1} \sum_{n=v+1}^{m+1} \frac{1}{n^{\varepsilon+1}} \\
& =o(1) \sum_{v=1}^{m}\left|\frac{\lambda_{v+1}}{\mu_{v+1}}\right|\left|s_{v} \psi_{v}\right| v^{\varepsilon-1} \int_{v}^{\infty} \frac{1}{n^{\varepsilon+1}} d x
\end{aligned}
$$

$$
\begin{equation*}
=o(1) \sum_{v=1}^{m}\left|\frac{\lambda_{v+1}}{\mu_{v+1}}\right|\left|s_{v} \psi_{v}\right| v^{-1} \tag{12}
\end{equation*}
$$

Applying partial summation to (12). this is to say we have

$$
\begin{aligned}
& \sum_{n=2}^{m+1} \frac{1}{n}\left|\psi_{n} T_{n, 2}\right|= o(1) \sum_{v=1}^{m-1} \Delta\left|\frac{\lambda_{v}}{\mu_{v+1}}\right| \sum_{r=1}^{m}\left|s_{r} \psi_{r}\right|+\frac{\lambda_{m}}{\mu_{m+1}} \sum_{v=1}^{m} \frac{\left|\psi_{v} s_{v}\right|}{v} \\
&= o(1) \sum_{v=1}^{m-1}\left\{\Delta \frac{\lambda_{v}}{\mu_{v+1}}+\lambda_{v} \Delta\left(\frac{1}{\mu_{v+1}}\right)\right\} \sum_{r=1}^{v}\left|s_{r} \psi_{r}\right| \frac{1}{r}+\frac{\lambda_{m}}{\mu_{m+1}} \sum_{v=1}^{m} \frac{\left|\psi_{v} s_{v}\right|}{v} \\
&= o(1) \sum_{v=1}^{m-1} \Delta \frac{\lambda_{v}}{\mu_{v+1}} \sum_{r=1}^{m} \frac{\left|\psi_{r} s_{r}\right|}{r}+o(1) \sum_{v=1}^{m-1} \lambda_{v} \Delta\left(\frac{1}{\mu_{v+1}}\right) \sum_{r=1}^{v}\left|s_{r} \psi_{r}\right| \frac{1}{r} \\
&+\frac{\lambda_{m}}{\mu_{m+1}^{m}} \sum_{v=1}^{m} \frac{\left|\psi_{v} s_{v}\right|}{v} \\
&= o(1) \sum_{v=1}^{m-1} \Delta \frac{\lambda_{v}}{\mu_{v+1}} \chi_{v} \mu_{v}+o(1) \sum_{v=1}^{m-1} \lambda_{v} \Delta\left(\frac{1}{\mu_{v+1}}\right) \chi_{v} \mu_{v}+\frac{\lambda_{m}}{\mu_{m+1}} \chi_{m} \mu_{m} \\
&= o(1) \sum_{v=1}^{m-1} \chi_{v} \Delta \lambda_{v}+o(1) \sum_{v=1}^{m-1} \mu_{v} \chi_{v} \Delta\left(\frac{1}{\mu_{v+1}}\right)+\lambda_{m} \mu_{m} \\
&=o(1) \sum_{v=1}^{m-1} \chi_{v} \lambda_{v}+o(1) \sum_{v=1}^{m-1} \lambda_{v}+o(1) \\
& \sum_{n=2}^{m+1} \frac{1}{n}\left|\psi_{n} T_{n, 2}\right|= o(1) \quad+
\end{aligned}
$$

In view of (1), (7), (11), (12) and (8).
Hence

$$
\sum_{n=2}^{m+1} \frac{1}{n}\left|\psi_{n} T_{n, 2}\right|=o(1) \quad \text { as } \quad m \rightarrow \infty
$$

Again

$$
\sum_{n=2}^{m+1} \frac{1}{n}\left|\psi_{n} T_{n, 3}\right| \leq \sum_{n=2}^{m+1} \frac{\left|\psi_{n}\right|}{n^{2}}\left\{\sum_{v=1}^{n-1}\left|s_{v}\right| v\left|\lambda_{v}\right| \Delta\left(\frac{1}{\mu_{v}}\right)\right\}
$$

Vol. 7 Issue 6, June 2018,
ISSN: 2320-0294 Impact Factor: 6.765
Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed \& Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

$$
\begin{align*}
& =o(1) \sum_{v=1}^{n-1}\left|s_{v}\right| v\left|\lambda_{v}\right| \Delta\left(\frac{1}{\mu_{v}}\right) \sum_{n=v+1}^{m+1} \frac{\left|\psi_{n}\right|}{n^{2}} \\
& =o(1) \sum_{v=1}^{n-1}\left|s_{v}\right| v\left|\lambda_{v}\right| \Delta\left(\frac{1}{\mu_{v}}\right)\left|\psi_{v}\right| v^{\varepsilon-1} \sum_{n=v+1}^{m+1} \frac{1}{n^{\varepsilon+1}} \\
& =o(1) \sum_{v=1}^{n-1}\left|s_{v} \psi_{v}\right| v\left|\lambda_{v}\right| \Delta\left(\frac{1}{\mu_{v}}\right) v^{\varepsilon-1} \int_{v}^{\infty} \frac{1}{n^{\varepsilon+1}} d x \\
\Rightarrow \quad \sum_{n=2}^{m+1} \frac{1}{n}\left|\psi_{n} T_{n, 3}\right| & =\sum_{v=1}^{n-1}\left|s_{v} \psi_{v}\right| v\left|\lambda_{v}\right| \Delta\left(\frac{1}{\mu_{v}}\right) v^{-1} \tag{13}
\end{align*}
$$

Applying partial summation to (13). that is to say we have

$$
\begin{gathered}
\sum_{n=2}^{m+1} \frac{1}{n}\left|\psi_{n} T_{n, 3}\right|=o(1) \sum_{v=1}^{n-1} \Delta\left\{v\left|\lambda_{v}\right| \Delta\left(\frac{1}{\mu_{v}}\right)\right\} \sum_{r=1}^{v} \frac{\left|s_{r} \psi_{r}\right|}{r}+m \lambda_{m} \Delta\left(\frac{1}{\mu_{m}}\right) \sum_{r=1}^{m} \frac{\left|s_{r} \psi_{r}\right|}{r} \\
\sum_{n=2}^{m+1} \frac{1}{n}\left|\psi_{n} T_{n, 3}\right|=o(1) \sum_{v=1}^{n-1}\left\{\left|\lambda_{v}\right| \Delta\left(\frac{1}{\mu_{v}}\right)+v\left|\Delta \lambda_{v}\right| \Delta\left(\frac{1}{\mu_{v}}\right)+v\left|\lambda_{v+1}\right| \Delta^{2}\left(\frac{1}{\mu}\right)\right\} \sum_{r=1}^{v} \frac{\left|s_{r} \psi_{r}\right|}{r} \\
+m\left|\lambda_{m}\right| \Delta\left(\frac{1}{\mu_{v}}\right) \sum_{r=1}^{m} \frac{\left|s_{r} \psi_{r}\right|}{r} \\
=o(1) \sum_{v=1}^{n-1}\left\{\left|\lambda_{v}\right| \Delta\left(\frac{1}{\mu_{v}}\right)+v\left|\Delta \lambda_{v}\right| \Delta\left(\frac{1}{\mu_{v}}\right)+v\left|\lambda_{v+1}\right| \Delta^{2}\left(\frac{1}{\mu}\right)\right\} \chi_{v} \mu_{v} \\
+m\left|\lambda_{m}\right| \Delta\left(\frac{1}{\mu_{m}}\right) \chi_{m} \mu_{m} \\
=o(1) \sum_{v=1}^{n-1}\left|\lambda_{v}\right| \Delta\left(\frac{1}{\mu_{v}}\right) \chi_{v} \mu_{v}+o(1) \sum_{v=1}^{n-1} v\left|\Delta \lambda_{v}\right| \Delta\left(\frac{1}{\mu_{v}}\right) \chi_{v} \mu_{v} \\
+o(1) \sum_{v=1}^{n-1} v\left|\lambda_{v+1}\right| \Delta^{2}\left(\frac{1}{\mu_{v}}\right) \chi_{v} \mu_{v}+m\left|\lambda_{m+1}\right| \Delta\left(\frac{1}{\mu_{m}}\right) \chi_{m} \mu_{m} \\
=o(1) \sum_{v=1}^{n-1} \frac{\left|\lambda_{v}\right|}{v}+o(1) \sum_{v=1}^{n-1}\left|\Delta \lambda_{v}\right|+o(1) \sum_{v=1}^{n-1}\left|\lambda_{v+1}\right|+o(1) \\
\Rightarrow \quad \sum_{n=2}^{n+1} \frac{1}{n}\left|\psi_{n} T_{n, 3}\right|=o(1)+o(1)+o(1)+o(1)
\end{gathered}
$$

International Journal of Engineering, Science and Mathematics

Vol. 7 Issue 6, June 2018,
ISSN: 2320-0294 Impact Factor: 6.765
Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed \& Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

In view of (1), (2), (3) and (6)
Hence

$$
\sum_{n=2}^{m+1} \frac{1}{n}\left|\psi_{n} T_{n, 3}\right|=o(1) \quad \text { as } \quad m \rightarrow \infty
$$

Again also as in $T_{n, 2}$ we have

$$
\begin{aligned}
\sum_{n=2}^{m+1} \frac{1}{n}\left|\psi_{n} T_{n, 4}\right| & =o(1) \sum_{n=1}^{m} \frac{\mid \psi_{n}}{\mu_{n}} \frac{\left|s_{n} \psi_{n}\right|}{n} \\
& =o(1) \text { as } \quad m \rightarrow \infty
\end{aligned}
$$

Finally we have

$$
\begin{array}{r}
\sum_{n=2}^{m+1} \frac{1}{n}\left|\psi_{n} T_{n, 5}\right|=o(1) \sum_{n=1}^{m} \frac{\left|\psi_{n}\right|}{n^{2}} \\
=o(1) \sum_{n=1}^{m} \frac{n^{\varepsilon-1}\left|\psi_{n}\right|}{n^{\varepsilon+1}}
\end{array}
$$

Since $\left(n^{\varepsilon-1}\left|\psi_{n}\right|\right)$ is non - increasing by hypothesis we have
Therefore we get

$$
\sum_{n=1}^{\infty} \frac{1}{n}\left|\psi_{n}, T_{n}\right|<\infty
$$

This completes the proof of theorem.

REFERENCES

[1]. BOR. H. " On the absolute ψ - Summability factor of infinite series". Protugaliae : Math, Vol. 45 fase. 2(1988).
[2]. KOGBETLIANTZ, E. Sur les series abselutmer somable par la method des mayennes arithmetiques, Bull. Sci. Math.C2149 234-256(1925).
[3]. MAZHAR, S.M. "On $|c, 1|_{k}$ - Summability factor of infinite series". Acta Sci. Math Szeged 27 67-70 (1966).
[4]. MISHRA, K.N. AND SRIVASTAVA, R.S.L. "On absolute Nörlund Summability factors of infinite series". Indian Journal Pure and Applied Math. 14(1) 40-43 Jan(1983).
[5]. MISHRA, K.N. AND SRIVASTAVA, R.S.L. "On absolute Cesāro Summability factors of infinite series Protugaliae Math, Vol. 42 fase(1983-84).

