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ABSTRACT 

According to Maeda's hypothesis on level 1 Eigen forms, the simple group PSL2𝔽(𝑝𝑑 ) exists as the Galois 

group of a number field ramifying solely at 𝑝 for every positive even d and every 𝑝 in density one set of 

primes. 
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Introduction 

This paper's objective is to support the use of automorphic forms to solve the inverse Galois problem for 

certain finite Lie type groups. PSL2 𝔽 (ℓ𝑑 ), groups have had some encouraging results recently, such as [2, 

11], and more general groups have seen some encouraging results as well [1, 6, 7]. The fundamental concept 

is to analyse the pictures of the residual Galois representations connected to various automorphic forms over 

ℚ. One can only get infinity or positive-density outcomes for now. The lack of control over the fields of 

coefficients of the associated automorphic forms appears to be the key technical impediment to upgrading the 

given results to density 1. 

If we adhere to the simplest situation, i.e. automorphic forms for GL2 over ℚ, we can use Maeda's hypothesis 

on the coefficient fields of level 1modular forms to prove our assumption. The control over the coefficient 

fields offered by Maeda's hypothesis suffices to provide the following strong result on the inverse Galois 

problem, which we use to highlight the modular approach's promise. 

.Theorem 1.1 Assume the following form of Maeda’s conjecture on level 1 modular forms: 

"The coefficient field ℚf := ℚ (an(f) | n ∈ N)  has degree dk := dim𝕔 Sk (1) and the Galois group of its normal 

closure over ℚ is the symmetric group Sdkfor any k and any normalized Eigen formf ∈ Sk(1) (the space of 

cuspidal modular forms of weight k and level 1)." 

(a) "Let 2 ≤ d ∈Nbe even. In that case, the number field K/ℚ with Galois group isomorphic to PSL2𝔽(𝑝𝑑) has 

density 1, and the set of prime psuch that it is ramified only at p has density 1." 
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http://www.ijesm.co.in/


 ISSN: 2320-0294Impact Factor: 6.765  

90 International Journal of Engineering, Science and Mathematics 

http://www.ijesm.co.in, Email: ijesmj@gmail.com 

 

(b) "Let 1 ≤ d ∈Nbe odd. In that case, the number field K/ℚ with Galois group isomorphic to PSL2𝔽(𝑝𝑑 ) has 

density 1, and the set of prime p such that it is ramified only at p has density 1." 

Hypothesis 1.2 in [5] was Maeda's assumption. This product has passed safety checks up to a weight of 

pounds (see [4]). We also highlight Tsaknias's  proposed [9] to extend a weaker version of Maeda's 

assumption to square-free levels. Natural density or Dirichlet density can be used interchangeably throughout 

the paper. If Theorem 1.1 is beneficial, then it can certainly be reformulated. Assume that the weights up to B 

in Maeda's hypothesis have been checked. The density of the sets in the theorem can be lowered explicitly for 

all "d ≤ dim𝕔SB" (1) depending on B. The remainder of the paper contains the proof for Theorem 1.1. For 

this, Ribet [8], Chebotarev's density theorem, a few combinatorics in symmetric groups, and Galois theory 

are used as foundations. 

2 Proof 

This section proves the thesis statement's key point. We follow the standard of considering the symmetric 

group "Sn"to be the group of permutations of the set "{1, 2, .. . , n}". 

2.1. Derivatives of the symmetric Galois group divide into primes. 

"It is well known that the splitting behaviour of unramified primes in a simple extension K(a)/K may be read 

off from the cycle type of the Frobenius, considered as an element of the permutation group of the roots of 

the minimum polynomial a. In this section, we present a somewhat non-standard proof. In [10], the reduction 

of the minimum polynomial of a is factorised into irreducibles. This is a more standard proof. 

If M/K is a separable field extension of degree n, then L/M is the Galois closure of M over K. There exists a 

M such that M = K(a). according to the theorem of the primitive element . This is the minimum polynomial 

of a over K , and these is a's roots in a = a1, a2, . . . ,an.ψ : G := Gal(L/K) → Sn,is an injective group 

homomorphism that maps H := Gal(L/M) onto with the permutation given by Sn(1) ∩ ψ(G)." 

Proposition 2.1 

"Assume the preceding set-up with K a number field. Let 𝔭be aprime of K and 𝔓a prime of L dividing 𝔭. We 

suppose that𝕻/𝖕is unramified. Then 𝔭the cycle lengths in the cycle decomposition of ψ(Frob𝕻/𝖕)∈Sn are 

precisely theresidue degrees of the primes of M lying above𝔭.𝔓" 

Proof   

"Let g ∈Gal (L/K). Denote by Let g ∈Gal (L/K). Denote by Frob𝕻/𝖕 the Frobenius element of g 𝔓/𝔭 in 

Gal(L/K) and by f(g𝕻∩M)/𝖕 the inertial degree of the prime g 𝔓∩ M of M over 𝔭.Write ϕ := FrobP/p for 

short. the Frobenius element of g 𝕻/𝖕 inGal(L/K) and by f(gP∩M)/p the inertial degree of the prime g 𝕻∩ M 

of M over p.Write 𝝋:= Frob𝕻/𝖕short". We have 
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From this we obtain the equivalences: 

 

 

This proves the proposition. 

2.2Combinatorics in symmetric groups. Primes with a fixed residue degree d in a symmetric Galois group 

will be of importance to us in the future. These results lead us to think about elements in symmetric groups 

that have d-cycle, which we do now in the following portion of our analysis This section's content is also 

probably well-known. Due to the ease and simplicity of the procedures, I opted to include the proofs rather 

than spend time looking for relevant examples to use. Let d be a constant integer between one and two. 

Create an expression for,d≥ 1that is recursively defined for i ≥ 1 and 1 ≤ j ≤ i. 

 

Lemma 2.2 With the preceding definitions we have 

 

Proof. "This is a simple induction. For the convenience of the reader, we include the inductive step: 
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For i→∞the convergence a(i) → 1−exp(−1/d ) is very quick because of the simple estimate of the error term 

| 𝟏/𝒋!𝒅𝒋 𝒋=𝒊+𝟏 |≤ 2/(i+1)!d
i+1 

.We now relate the quantities a(i) and b(i, j) to proportions in the symmetric 

group. Let n, j ∈N. Define 

An(d) := {g ∈ Sn | g contains at least one d-cycle}, 

Bn(d, j) := {g ∈ Sn | g contains precisely j d-cycles}." 

Lemma 2.3"For all n ≥ 2d the following formulae hold, where i := n/d˩: 

(a) n! · a(i) = #An(d), 

(b) n! · b(i, j) = #Bn(d, j), 

(c) n! · 2n−d− /n(n−1) (1 − a(i − 1)) = #{g ∈ Bn(d, 1) | the unique d-cycle contains 1 or 2}, 

(d) n! · 1/n(n−1) (1 − a(i − 2)) = #{g ∈ Bn(d, 2) | one d-cycle contains 1, the other 2}." 

Proof. "(a) and (b) are proved by induction for n ≥ 1. For n < d (i.e., i = 0), the equalities are trivially true. 

Now we describe the induction step:#Bn(d,j)=1/j!· (𝒏
𝒅

) .(d1)!  𝒏−𝒅
𝒅
  .  𝒅 − 𝟏 !...X  𝒏− 𝒋−𝟏 𝒅

𝒅
  .  𝒅 − 𝟏 ! 

X  𝒏 − 𝒋𝒅  !.  𝟏 − 𝒂 𝒊 − 𝒋  ! =
𝒏!

𝒋!𝒅𝒋 𝟏−𝒂 𝒊−𝒋  
." 

"The first equality can be seen as follows: there are j! ways of ordering the j d-cycles.The number of choices 

for the first d-cycle is given by(𝒏
𝒅

).(d-1)!the one for the  second is   𝒏−𝒅
𝒅
  .  𝒅 − 𝟏 !...j d-cycles, n − jd 

elements remain. Among these remaining elements we may only take those that do not contain any d-cycle; 

their number is (n jd)!·(1 − a(i − j))   by induction hypothesis(c) The number of elements in the set in 

question is 

because   𝑛−1
𝑑−1

  .  𝑑 − 1 ! is the number of choices for a d-cycle with one previously chosen element (i.e., 1 

or 2) and  𝑛−2
𝑑−2

  .  𝑑 − 1 !the number of choices for a d-cycle containing 1 and 2." 

 

(d) "The number of elements in the set in question is 

http://www.ijesm.co.in/
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Because   𝑛−2
𝑑−2

  .  𝑑 − 1 !is the number of choices for a d-cycle containing 1 and not containing 2 

and  𝑛−2(𝑑−1)
𝑑−1

  .  𝑑 − 1 !is the number of choices for a d-cycle containing 2 among the elements remaining 

after the first choice, and again (n−2d)! ·(1 − a(i − 2)) is the number of elements remaining after the two 

choices such that they do not contain any d-cycle. 

We write A𝑛 ± (d) for the subsets of An(d) consisting of the elements having positive or negative signs." 

Corollary 2.4"Let d, n ∈ N, n ≥ 2d ≥ 2 and puti := _ i := n/d˩Then the estimates 

 

And 

 

Hold" 

Proof. Consider the bijection  

 

 

 

"For j > 2 the image of An+ (d) ∩Bn(d, j) under φ lands in An−n (d) because the multiplication with (1 2) can 

at most remove two d-cycles. Now consider g ∈ An+(d)∩Bn(d, 2). Clearly φ(g) ∈ An− (d) unlessone of the d-

cycles contains 1 and the other one contains 2. For g ∈ An+(d)∩Bn(d, 1)we find that φ(g) ∈ An− (d) unless 

the single d-cycle of g contains 1 or 2. In view ofLemma 2.3, we thus obtain the inequality. 

 

By exchanging the roles of + and − we obtain the first estimate. The second estimate then is an immediate 

consequence of Lemma 2.2 and the trivial estimate of the error term mentioned after it." 

2.3. Density of primes with prescribed residue degree in composites of field extensions with symmetric 

Galois groups. 

http://www.ijesm.co.in/
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Lemma 2.5"Let 1≤d∈ N, K be a field and L/K, F/K be two finite Galois extensions such that Gal(L/K)≅ Sn 

with n ≥ max(5, 2d) and L is not a subfield of F.Let C ⊆ G := Gal(F/K) be a subset and put 

 

Let X := Gal(LF/K) and Y be the subset of X consisting of those elements that project to an element in An(d) 

⊆ Sn ≅Gal(L/K) or to an element in C ⊆ Gal(F/K)under the natural projections." Then 

 

Proof. "The intersection L ∩ F is a Galois extension of K which is contained in L.The group structure of Sn 

(more precisely, the fact that the alternating group An is the only non-trivial normal subgroup of Sn) hence 

implies that [L ∩ F : K] ≤ 2;for, if L ∩ F were equal to L, then L would be a subfield of F, which is excluded 

byassumption. 

Assume first L ∩ F = K, then Gal(LF/K) Gal(L/K)× Gal(F/K) and thus, #Y = #An(d)·#G+#Sn·#C− 

#An(d)·#C,from which the claimed formula follows by dividing by #X = #G·#Sn" 

"Assume now that L∩F =: N is a quadratic extension of K. Then X is isomorphic to the index 2 subgroup of 

Gal(L/K)×Gal(F/K) consisting of those pairs of elements (g, h) such that g and h project to the same element 

in Gal(N/K). The elements ofAn(d) that project to the identity of Gal(N/K) are precisely those in An + (d). In a 

similar way, we denote by C+ those elements of C projecting to the identity of Gal(N/K), and by C− the 

others. " Then we have 

 

The claim is now a consequence of Corollary 2.4. 

Lemma 2.6"Let (an)n≥1 be a sequence of non-negative  real numbers such that 𝑎𝑛∞
𝑛−1  diverges. 

(a) Let γ > 0, b0∈ R. Assume that an< 1/ γ for all n ≥ 1. We define a sequence (bn)n≥0 by the rule 

bn := bn−1 + an − γbn−1an 

for, all n ≥ 1. Then the sequence (bn)n≥1 tends to 1/γ for n→∞. 
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(b) Let (δn)n≥1 be a sequence of real numbers tending to 0 and let c0∈ R. Assume thatlim supn→∞ an < 1. We 

define the (modified) inclusion–exclusion sequence as 

cn := cn−1 + an − (1 + δn)cn−1an for n ≥ 1 

Then the sequence (cn)n≥1 tends to 1. 

 

Proof. (a) We let 

rn := 1 − γbn = 1− γ(bn−1 + an − γbn−1an) = (1 − γbn−1)(1 − γan) 

= (1 − γb0)(1 − γa1)(1 − γa2) · · · (1 − γan)." 

To see that the limit of (γbn)n≥0 is 1, we take the logarithm of  

"(1−γa1)(1−γa2) · · ·(1 − γan): 

 

By our assumption this diverges to −∞ for n→∞, so that limn→∞ rn = 0, proving the lemma." 

2.4. End of the proof. 

 

"Let min  

There is N such that |δn| <∈ and an< 1/1+∈ for all n ≥ N.By enlarging N if necessary we may also assume 

that cN ≥ 0. The reason for the latter is that cN + 𝑎𝑛 + 1𝑛
𝑛+𝑖 if cN+i < 0 for all0 ≤ i ≤ nWe consider the two 

sequences 

bN := cN and bn = bn−1 + an − (1 + ∈)bn−1 an, for n > N.and 

dN := cN and dn = dn−1 + an − (1 - ∈)dn−1 an, for n > N.    

 By (a) we know limn→∞ bn = 1/1+∈ and limn→∞ dn = 1/1−∈ For n ≥ N by induction we obtain the estimate: 

0 ≤ bn ≤ cn ≤ dn 

Thus, there is M such that 1/1+∈−∈≤ cn ≤ 1/1−∈ + ∈ for all n ≥ M. As ∈ is arbitrary,we find limn→∞ cn = 1." 

2.4. End of the proof 

"Since dim𝕔 Sk(1) tends to∞ for k→∞(for even k), Maeda’sconjecture implies the existence of new forms fn of 

level one and increasing weight(automatically without complex multiplication because of level 1) such that 

their coefficient fields Mn := ℚfn satisfy the assumptions of TheoremFor each n and each prime 𝔓 of 

Mnconsider the Galois representation 

attached to fn.implies that for each fn and all but 

possibly finitely many P many 𝔓, its image is equal to PGL2𝐹(𝔓)if the residue field F 𝔓 of 𝔓 has odd degree 

over its prime field, and equal to PSL2 (𝐹 𝔓) if the residue degree is even. We will abbreviate this by 

PXL2(𝐹 𝔓)). 

Consequently, the set of primes (of ℚ) 
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has the same density as the corresponding set in Theorems, implying Theorem 1.1." 
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