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Abstract: 

System of linear equations are solved either by direct methods which yield exact solution 

or by iterative methods which gives an approximation solution. In computational 

mathematics, iterative proccess plays a vital role that uses an initial guess to determine the 

approximation solution of any given problem. [7, 9, 10]There are several methods to solve 

system of linear and nonlinear equations, such as iterative methods, approximation 

methods, elimination methods and interpolation methods[13, 16, 17]. In this paper we use 

Conjugate Gradient Method to solve system of linear equations, as this is one of the most 

popular and well known iterative techniques for solving sparse symmetric positive definite 

systems of linear equations[24]. In particular, we discuss about pure conjugate gradient 

method and preconditioned conjugate gradient method. Numerical examples are shown for 

each method and comparison of these method is done based on the number of iterations 

and faster convergence. Thus we observe that the preconditioned conjugate gradient 

method is more preferred when the system is large because it gives less number of 

iterations and converge faster.  
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1  Introduction 

Linear system is a collection of two or more linear equations involving the same set of 

variables. We have come across some of the iterative methods[1, 5] namely Gauss 

Elimination, Gauss Jacobi, Gauss-Seidel, Relaxation methods, etc. The Conjugate Gradient 

Method is used to an 𝑛 × 𝑛 positive definite linear system. Generally this method is 

employed as an iterative approximation method for solving very large systems where it is 

not practically possible to solve with a direct method. The method of conjugate gradient 

was developed by E-Stiefel and M. R. Hestences (1952)[1, 4]. Shortly thereafter, they 

jointly published what is considered the seminal reference on conjugate gradient[18]. 

Fletcher et. al. generalised this method for nonlinear problems in 1964[22, 24] based on the 

work by Davidon[20, 24] and Powell et. al.[21]. Daniel analysed about the convergence of 

nonlinear conjugate gradient with inexact line searches[19, 24]. Gilbert et. al. discussed 

about the choice of 𝛽 for nonlinear conjugate gradient[23, 24]. Peter et. al. have considered 

different types of sparse matrices. For these matrix types, the counter-movement of the 
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applicability of discretization schemes and the possibilities of performance tuning is 

shown[25, 24]. O. Osadcha et. al. have done comparison of steepest descent method with 

Conjugate gradient method and implemented to solve systems of linear equations. They 

have observed that steepest descent method is faster method, because it solve equations in 

less amount of time. [26, 24]Conjugate gradient method is slower, but more productive, 

because, it converges after less iterations. So, they have reported that one method can be 

used, when we want to find solution very fast and another can be converge to maximum in 

less iteration[26, 24]. This method earlier developed as direct method, but later on became 

popular for its properties as an iterative method, especially in the field of using 

preconditioning techniques[1, 2, 13, 5]. This method solves the given system of linear 

equations by finding n conjugate vectors, and then computing the coeffcients. The 

conjugate gradient methods exploit the conjugacy concept by using gradient 

information[3]. In this method, the search direction is established as a linear combination 

of all the previous search directions and newly determined gradient. This method is stable 

and quadratically convergent and is used extensively. Rao (1979) found it to be the best 

general-purpose unconstrained optimization technique that use derivatives[11, 12]. In 

general nonlinear cases, the number of iterations is not fixed, but still the method 

converges very rapidly. Another advantage of the conjugate gradient method is that we go 

downhill not along a line, but on various planes. In this case, we can overcome small local 

minima of the misfit functional and go faster directly to its global minimum. This methods 

begins with choosing search directions in such a way that the sequence of approximation 

coverges rapidly to the solution[1]. Residual vector takes the form as mentioned in steepest 

descent method but that can not be used for linear system as it is slow convergence. As an 

alternative approach a set of vectors uses A-orthogonality condition. These A-ortogonal 

vectors associated with positive definite matrix is linearly dependent[1, 2]. In this method 

we find, for the quadratic function the negative residual is equal to the steepest descent or 

negative gradient direction. Hence the name of the method is the conjugate gradient 

method. Some times pure Conjugate Gradient method simply does not converge as fast as 

we would like[27]. This slow convergence is may be because the system is ill-conditioned. 

An ill-conditioned system is a system with a high condition number 𝜅. The condition 

number for a system like ours can be expressed as 𝜅 =
𝜆𝑚𝑎𝑥

𝜆𝑚𝑖𝑛
[27]. It can be shown that for 

the conjugate gradient method, the number of iterations required to reach convergence is 

proportional to the condition number. Therefore we use method of preconditiong to obtain 

faster convergence. In this method, we use the matrix 𝐴 is positive definite and symmetric. 

We obtain more effective calculations and good results in only about  𝑛 iterations, if the 

matrix has been preconditioned. Therefore preconditioned conjugate gradient method is 

preffered over other iterative methods. [6, 8]The method has one of the major advantage 

that to solve large-scale problems (5,00,000  𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠) with lower storage as compared 

to some other existing methods. This method is especially used when the problems arise in 

the solution of boundary value problem. Thus the conjugate gradient method is superior 

than any other elimination methods. 
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2 Methodology 

  

2.1 Theorem 

[1, 2] The vector 𝑥∗ is a solution to the positive definite linear system 𝐴𝑥 = 𝑏 if and only if 

𝑥∗ produces the minimal value of 𝑔(𝑥) = 〈𝑥,𝐴𝑥〉 − 2〈𝑥, 𝑏〉. (1) 

Proof: Let 𝑥 and 𝑣 ≠ 0 be fixed vectors and 𝑡 be a real number variable,  

then equation (1) becomes,  

 𝑔(𝑥 + 𝑡𝑣) = 〈𝑥 + 𝑡𝑣,𝐴𝑥 + 𝑡𝐴𝑣〉 − 2〈𝑥 + 𝑡𝑣, 𝑏〉, 
 𝑔(𝑥 + 𝑡𝑣) = 𝑔(𝑥) − 2𝑡〈𝑣, 𝑏 − 𝐴𝑥〉 + 𝑡2〈𝑣,𝐴𝑣〉. (2) 

  We define the quadratic function  in 𝑡 by keeping 𝑥 and 𝑣 fix, we get  

 (𝑡) = 𝑔(𝑥 + 𝑡𝑣). (3) 

  

′(𝑡) = −2〈𝑣, 𝑏 − 𝐴𝑥〉 + 2𝑡〈𝑣,𝐴𝑣〉,  (4) 

 assumes a minimal value when ′(𝑡) = 0, because of its 𝑡2 coefficient, 〈𝑣,𝐴𝑣〉 is 

positive.  

′(𝑡) minimum occurs when  

 

 𝑡 =
〈𝑣,𝑏−𝐴𝑥〉

〈𝑣,𝐴𝑣〉
, (5) 

 from equation (2),  

 (𝑡 ) = 𝑔(𝑥 + 𝑡 𝑣), 

 (𝑡 ) = 𝑔(𝑥) −
〈𝑣,𝑏−𝐴𝑥〉2

〈𝑣,𝐴𝑣〉
. (6) 

Thus, for any vector 𝑣 ≠ 0, we have 𝑔(𝑥 + 𝑡 𝑣) < 𝑔(𝑥) unless 〈𝑣, 𝑏 − 𝐴𝑥〉 = 0, in which 

case 

 

 𝑔(𝑥) = 𝑔(𝑥 + 𝑡 𝑣). (7) 

This is the basic result required to prove theorem. 

Suppose 𝑥∗ satisfies 𝐴𝑥∗ = 𝑏, then 〈𝑣, 𝑏 − 𝐴𝑥∗〉 = 0, for any vector 𝑣 and 𝑔(𝑥) can not be 

made any smaller than 𝑔(𝑥∗). Thus, 𝑥∗ minimizes 𝑔. 

On the other hand, suppose that 𝑥∗ is a vector that minimizes 𝑔. Then for any vector 𝑣, we 

have  

 𝑔(𝑥∗ + 𝑡 𝑣) ≥ 𝑔(𝑥∗). (8) 

 Thus, 〈𝑣, 𝑏 − 𝐴𝑥∗〉 = 0. This implies that 𝑏 − 𝐴𝑥∗ = 0, 

 

 𝐴𝑥∗ = 𝑏. (9) 

  

2.2 Conjugate Gradient Method 

We choose 𝑥, an approximate solution to 𝐴𝑥∗ = 𝑏 and 𝑣 ≠ 0 which gives a search 

direction from 𝑥 to new improved approximation.  

Let,  

 𝑟 = 𝑏 − 𝐴𝑥, (10) 

be the residual vector associated with 𝑥 and we know that,  

 𝑡 =
〈𝑣,𝑏−𝐴𝑥〉

〈𝑣,𝐴𝑣〉
, 

 𝑡 =
〈𝑣,𝑟〉

〈𝑣,𝐴𝑣〉
. (11) 

If 𝑟 ≠ 0 and if 𝑣 and 𝑟 are not orthogonal then 𝑥 + 𝑡𝑣 gives a smaller value for 𝑔 than 

𝑔(𝑥∗) and is closer to 𝑥∗ than 𝑥. 
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This suggest the following method:  

Let 𝑥(0) be an initial approximation to 𝑥∗ and let 𝑣(1) ≠ 0 be an initial search direction. 

For 𝑘 = 1,2,3,…, we compute  

 

 𝑡𝑘 =
〈𝑣(𝑘),𝑏−𝐴𝑥 (𝑘−1)〉

〈𝑣(𝑘),𝐴𝑣(𝑘)〉
, (12) 

 𝑥(𝑘) = 𝑥(𝑘−1) + 𝑡𝑘𝑣
(𝑘). (13) 

Choose a new search direction 𝑣(𝑘+1). The main object is to make this selection so that the 

sequence of approximations {𝑥(𝑘)} converges rapidly to 𝑥∗.  

2.3 Method of choosing search directions: 

We have, 𝑔 as a function of the components of 𝑥 = (𝑥1 , 𝑥2 ,… , 𝑥𝑛)𝑡 .  
Then,  

 𝑔(𝑥1 , 𝑥2 ,… , 𝑥𝑛) = 〈𝑥,𝐴𝑥〉 − 2〈𝑥, 𝑏〉 =  𝑛
𝑖=1  𝑛

𝑗=1 𝑎𝑖𝑗 𝑥𝑖𝑥𝑗 − 2 𝑛
𝑖=1 𝑥𝑖𝑏𝑖 . (14) 

Taking partial derivatives with respect to the component variables 𝑥𝑘  gives,  

 
𝜕𝑔

𝜕𝑥𝑘
(𝑥) = 2 𝑛

𝑖=1 𝑎𝑘𝑖𝑥𝑖 − 2𝑏𝑘 , (15) 

which is the 𝑘𝑡  component of the vector 2(𝐴𝑥 − 𝑏). 
The gradient of 𝑔 is,  

 𝛻𝑔(𝑥) =  
𝜕𝑔

𝜕𝑥1
(𝑥),

𝜕𝑔

𝜕𝑥2
(𝑥),… ,

𝜕𝑔

𝜕𝑥𝑛
(𝑥) 

𝑡
= 2(𝐴𝑥 − 𝑏) = −2𝑟. (16) 

We know that, the direction of greatest decrease in the value of 𝑔(𝑥) is the direction given 

by −𝛻𝑔(𝑥), in the direction of the residual 𝑟. The method chooses,  

 𝑣(𝑘+1) = 𝑟(𝑘) = 𝑏 − 𝐴𝑥(𝑘), (17) 

is the steepest descent method [1]. Here we should observe that in the above method we 

need to compute the set of search directions before applying the conjugate gradient 

method. But it is difficult to find such search directions when we find the solution for 

large-scale system. This is one major drawback of this method. Thus we approach 

alternative method to find set of search directions.  

3 Alternative Method 

 An alternative approach uses a set of non zero direction vectors {𝑣(1),… , 𝑣(𝑛)} that satisfy  

 〈𝑣(𝑖),𝐴𝑣(𝑗 )〉 = 0,    𝑖𝑓  𝑖 ≠ 𝑗, (18) 

this condition is called an  A-orthogonality condition and the set of vectors {𝑣(1),… , 𝑣(𝑛)} 

is said to be A-orthogonal. With these set of A-orthogonal vectors[3], we can say that the 

positive definite matrix 𝐴 is linearly independent. The set of search directions gives 

 

 𝑡 =
〈𝑣(𝑘),𝑏−𝐴𝑥 (𝑘−1)〉

〈𝑣(𝑘),𝐴𝑣(𝑘)〉
, 

 𝑡 =
〈𝑣(𝑘),𝑟(𝑘−1)〉

〈𝑣(𝑘),𝐴𝑣(𝑘)〉
, (19) 

 and  

 𝑥(𝑘) = 𝑥(𝑘−1) + 𝑡𝑘𝑣
(𝑘). (20) 

Now, we prove the theorem which gives convergence in at most 𝑛-step with choice of 

search directions. Then it produces the exact solution as a direct method, assuming that the 

arithmetic is exact.  
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3.1 Convergence 

  

3.1.1 Theorem 

Let {𝑣(1),… , 𝑣(𝑛)} be an A-orthogonal set of nonzero vectors associated with the positive 

definite matrix 𝐴, and let 𝑥(0) be arbitrary.  

Define,  

 𝑡𝑘 =
〈𝑣(𝑘),𝑏−𝐴𝑥 (𝑘−1)〉

〈𝑣(𝑘),𝐴𝑣(𝑘)〉
, (21) 

 and 

 

 𝑥(𝑘) = 𝑥(𝑘−1) + 𝑡𝑘𝑣
(𝑘). (22) 

  

for 𝑘 = 1,2,… ,𝑛. Then, assuming exact arithmetic, 𝐴𝑥(𝑛) = 𝑏.  

Proof:  

Since, for each 𝑘 = 1,2,… ,𝑛,  

 𝑥(𝑘) = 𝑥(𝑘−1) + 𝑡𝑘𝑣
(𝑘), (23) 

 we have,  

 𝐴𝑥(𝑛) = 𝐴𝑥(𝑛−1) + 𝑡𝑛𝐴𝑣
(𝑛), 

 𝐴𝑥(𝑛) = 𝐴𝑥(0) + 𝑡1𝐴𝑣
(1) + 𝑡2𝐴𝑣

(2) + ⋯+ 𝑡𝑛𝐴𝑣
(𝑛). (24) 

 Subtracting 𝑏 from equation (24) , we get 

 

 𝐴𝑥(𝑛) − 𝑏 = 𝐴𝑥(0) − 𝑏 + 𝑡1𝐴𝑣
(1) + 𝑡2𝐴𝑣

(2) + ⋯+ 𝑡𝑛𝐴𝑣
(𝑛). 

Now, we take inner product on both the sides with the vector 𝑣(𝑘) and using the properties 

of inner products and since 𝐴 is symmetric to get,  

 〈𝐴𝑥(𝑛) − 𝑏, 𝑣(𝑘)〉 = 〈𝐴𝑥(0) − 𝑏, 𝑣(𝑘)〉 + 𝑡1〈𝐴𝑣
(1), 𝑣(𝑘)〉 + ⋯+

𝑡𝑛〈𝐴𝑣
(𝑛), 𝑣(𝑘)〉, 

 = 〈𝐴𝑥(0) − 𝑏, 𝑣(𝑘)〉 + 𝑡1〈𝑣
(1),𝐴𝑣(𝑘)〉 + ⋯+ 𝑡𝑛〈𝑣

(𝑛),𝐴𝑣(𝑘)〉. (25) 

By A-orthogonality property, for each 𝑘,  

 〈𝐴𝑥(𝑛) − 𝑏, 𝑣(𝑘)〉 = 〈𝐴𝑥(0) − 𝑏, 𝑣(𝑘)〉 + 𝑡𝑘〈𝑣
(𝑘),𝐴𝑣(𝑘)〉. (26) 

As,  

 𝑡𝑘〈𝑣
(𝑘),𝐴𝑣(𝑘)〉 = 〈𝑣(𝑘), 𝑏 − 𝐴𝑥(𝑘−1)〉, 

 = 〈𝑣(𝑘), 𝑏 − 𝐴𝑥(0)〉 + 〈𝑣(𝑘),𝐴𝑥(0) − 𝐴𝑥(1)〉 
 +⋯+ 〈𝑣(𝑘),𝐴𝑥(𝑘−2) − 𝐴𝑥(𝑘−1)〉. (27) 

 for any 𝑖,  
 𝑥(𝑖) = 𝑥(𝑖−1) + 𝑡𝑖𝑣

(𝑖), (28) 

 and  

 𝐴𝑥(𝑖) = 𝐴𝑥(𝑖−1) + 𝑡𝑖𝐴𝑣
(𝑖), 

 𝐴𝑥(𝑖−1) − 𝐴𝑥(𝑖) = −𝑡𝑖𝐴𝑣
(𝑖). 

 Thus,  

 𝑡𝑘〈𝑣
(𝑘),𝐴𝑣(𝑘)〉 = 〈𝑣(𝑘), 𝑏 − 𝐴𝑥(0)〉 − 𝑡1〈𝑣

(𝑘),𝐴𝑣(1)〉 − ⋯− 𝑡𝑘−1〈𝑣
(𝑘),𝐴𝑣(𝑘−1)〉. (29) 

 Because of the A-orthogonality, 〈𝑣(𝑘),𝐴𝑣(𝑖)〉 = 0, for 𝑖 ≠ 𝑘,  

 〈𝑣(𝑘),𝐴𝑣(𝑘)〉𝑡𝑘 = 〈𝑣(𝑘), 𝑏 − 𝐴𝑥(0)〉. (30) 

 From equation (26),  

 〈𝐴𝑥(𝑛) − 𝑏, 𝑣(𝑘)〉 = 〈𝐴𝑥(0) − 𝑏, 𝑣(𝑘)〉 + 〈𝑣(𝑘), 𝑏 − 𝐴𝑥(0)〉 = 0. (31) 

Hence, the vector 𝐴𝑥(𝑛) − 𝑏 is orthogonal to the A-orthogonal set of vectors 

{𝑣(1),… , 𝑣(𝑛)}.  

From this, it follows that  
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 𝐴𝑥(𝑛) − 𝑏 = 0, 
 𝐴𝑥(𝑛) = 𝑏. (32) 

  

3.2 Orthogonality of residual vector and direction vectors 

  

3.2.1 Theorem 

The residual vector 𝑟(𝑘), where 𝑘 = 1,2,… ,𝑛, for a conjugate direction method, satisfy the 

equations  

 〈𝑟(𝑘), 𝑣(𝑗 )〉 = 0,    𝑓𝑜𝑟𝑒𝑎𝑐    𝑗 = 1,2,… ,𝑘. (33) 

Proof: 

To construct the direction vectors {𝑣(1), 𝑣(2),… } and the approximations {𝑥(1), 𝑥(2),… } . 

We take an initial approximation 𝑥(0) and we use the steepest descent direction  

 𝑟(0) = 𝑏 − 𝐴𝑥(0), (34) 

 as the first search direction 𝑣(1).  

Assume that the conjugate search directions 𝑣(1),𝑣(2),… , 𝑣(𝑘−1) and the approximations 

𝑥(1), 𝑥(2),… , 𝑥(𝑘−1) which is computed with  

 𝑥(𝑘−1) = 𝑥(𝑘−2) + 𝑡𝑘−1𝑣
(𝑘−1). (35) 

 A-orthogonality condition is,  

〈𝑣(𝑖),𝐴𝑣(𝑗 )〉 = 0    𝑎𝑛𝑑    〈𝑟(𝑖), 𝑟(𝑗 )〉 = 0,    𝑓𝑜𝑟  𝑖 ≠ 𝑗. If 𝑥(𝑘−1) is the solution to 𝐴𝑥 = 𝑏 

then we get vectors. 

If 𝑟(𝑘−1) = 𝑏 − 𝐴𝑥(𝑘−1) ≠ 0 and we know that, 〈𝑟(𝑘−1), 𝑣(𝑖)〉 = 0  𝑓𝑜𝑟𝑒𝑎𝑐  𝑖 =
1,2,… , 𝑘 − 1.  

We use 𝑟(𝑘−1) to find 𝑣(𝑘) by taking,  

 𝑣(𝑘) = 𝑟(𝑘−1) + 𝑠𝑘−1𝑣
(𝑘−1). (36) 

 We want to choose 𝑠𝑘−1 such that,  

 〈𝑣(𝑘−1),𝐴𝑣(𝑘)〉 = 0, (37) 

 by equation (36),  

 𝐴𝑣(𝑘) = 𝐴𝑟(𝑘−1) + 𝑠𝑘−1𝐴𝑣
(𝑘−1), 

 and  

 〈𝑣(𝑘−1),𝐴𝑣(𝑘)〉 = 〈𝑣(𝑘−1),𝐴𝑟(𝑘−1)〉 + 𝑠𝑘−1〈𝑣
(𝑘−1),𝐴𝑣(𝑘−1)〉, (38) 

 When  

 𝑠𝑘−1 = −
〈𝑣(𝑘−1),𝐴𝑟 (𝑘−1)〉

〈𝑣(𝑘−1),𝐴𝑣(𝑘−1)〉
, (39) 

 then  

 〈𝑣(𝑘−1),𝐴𝑣(𝑘)〉 = 0. 
We can also show that, 〈𝑣(𝑘),𝐴𝑣(𝑖)〉 = 0, for each 𝑖 = 1,2,… ,𝑘 − 2   with the choice of 

𝑠𝑘−1. Thus 𝑣(1),𝑣(2),… , 𝑣(𝑘−1) is an 𝐴-orthogonal set. 

We have, 𝑣(𝑘) (chosen), now we compute  

 

 𝑡𝑘 =
〈𝑣(𝑘),𝑟(𝑘−1)〉

〈𝑣(𝑘),𝐴𝑣(𝑘)〉
, 

 =
〈𝑟(𝑘−1)+𝑠𝑘−1𝑣

(𝑘−1),𝑟(𝑘−1)〉

〈𝑣(𝑘),𝐴𝑣(𝑘)〉
, 

 𝑡𝑘 =
〈𝑟(𝑘−1),𝑟(𝑘−1)〉

〈𝑣(𝑘),𝐴𝑣(𝑘)〉
+ 𝑠𝑘−1

〈𝑣(𝑘−1),𝑟(𝑘−1)〉

〈𝑣(𝑘),𝐴𝑣(𝑘)〉
, (40) 

we know that, 〈𝑣(𝑘−1), 𝑟(𝑘−1)〉 = 0, 

equation (40) becomes,  
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 𝑡𝑘 =
〈𝑟(𝑘−1),𝑟(𝑘−1)〉

〈𝑣(𝑘),𝐴𝑣(𝑘)〉
. (41) 

 Thus,  

 𝑥(𝑘) = 𝑥(𝑘−1) + 𝑡𝑘𝑣
(𝑘). (42) 

 We have to compute 𝑟(𝑘), multiply by 𝐴 and subtract 𝑏 from equation (42), we get  

 𝐴𝑥(𝑘) − 𝑏 = 𝐴𝑥(𝑘−1) − 𝑏 + 𝑡𝑘𝐴𝑣
(𝑘), 

 𝑟(𝑘) = 𝑟(𝑘−1) − 𝑡𝑘𝐴𝑣
(𝑘). (43) 

 equation (43) gives,  

 〈𝑟(𝑘), 𝑟(𝑘)〉 = 〈𝑟(𝑘−1), 𝑟(𝑘)〉 − 𝑡𝑘〈𝐴𝑣
(𝑘), 𝑟(𝑘)〉 = −𝑡𝑘〈𝑟

(𝑘),𝐴𝑣(𝑘)〉. 
 and also from equation (??),  

 〈𝑟 (𝑘 −1), 𝑟 (𝑘 −1)〉 = 𝑡 𝑘 〈𝑣
(𝑘 ),𝐴𝑣 (𝑘 )〉. 

 Thus, we get  

 𝑠 𝑘 = −
〈𝑣 (𝑘 ),𝐴𝑟 (𝑘 )〉

〈𝑣 (𝑘 ),𝐴𝑣 (𝑘 )〉
, 

 𝑠 𝑘 =
〈𝑟 (𝑘 ),𝑟 (𝑘 )〉

〈𝑟 (𝑘 −1),𝑟 (𝑘 −1)〉
. (44) 

 We get the values,  

 

 𝑟 (0) = 𝑏 − 𝐴𝑥 (0);     𝑣 (1) = 𝑟 (0);   𝑓𝑜𝑟   𝑘 = 1,2,… ,𝑛 , (45) 

  

 𝑡 𝑘 =
〈𝑟 (𝑘 −1),〈𝑟 (𝑘 −1)〉

〈𝑣 (𝑘 ),𝐴𝑣 (𝑘 )〉
, (46) 

  

 𝑥 (𝑘 ) = 𝑥 (𝑘 −1) + 𝑡 𝑘 𝑣
(𝑘 ), (47) 

  

 𝑟 (𝑘 ) = 𝑟 (𝑘 −1) − 𝑡 𝑘 𝐴𝑣 (𝑘 ), (48) 

  

 𝑠 𝑘 =
〈𝑟 (𝑘 ),𝑟 (𝑘 )〉

〈𝑟 (𝑘 −1),𝑟 (𝑘 −1)〉
, (49) 

  

 𝑣 (𝑘 +1) = 𝑟 (𝑘 ) + 𝑠 𝑘 𝑣
(𝑘 ). (50) 

  

 

 

 

 

 

Example:  

 410𝑥 1 − 𝑥 2 = 9, 
 −𝑥 1 + 10𝑥 2 − 2𝑥 3 = 7, (51) 

 −2𝑥 2 + 10𝑥 3 = 6. 
 Solution:The system (51) can be written in the form of coefficient matrix,  

 𝐴 =  10 − 1 0 − 1 10 − 2 0 − 2 10  . (52) 

  

 𝑟 (0) = 𝑏 − 𝐴𝑥 (0), 
 =  9 7 6  𝑡 −  10 − 1 0 − 1 10 − 2 0 − 2 10   0 0 0  = 𝑏 =  9,7,6  𝑡 . (53) 

  

 𝑣 (1) = 𝑟 (0) =  9,7,6  𝑡 . (54) 
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 𝑡 1 =
〈𝑟 (0),𝑟 (0)〉

〈𝑣 (1),𝐴𝑣 (1)〉
=

166

1366
= 0.121522694. (55) 

  

 𝑥 (1) = 𝑥 (0) + 𝑡 1𝑣
(1), 

 =  0,0,0  𝑡 + (0.121522694) 9,7,6  𝑡 , 

 𝑥 (1) =  1.093704246,0.850658858,0.729136164  𝑡 . (56) 

Proceeding in this way, we get  

 𝑥 (2) =  0.99931295,0.964273445,0.778426657  𝑡 . (57) 

 𝑥 (3) =  0.99578954,0.957894655,0.791578911  𝑡 . (58) 

This is the required solution for the given linear system. 

We extend the conjugate gradient method by including preconditioning. We use this 

preconditioning only when the matrix is ill-conditioned [5]. Normally, Conjugate gradient 

method is highly susceptible to rounding of error if the matrix is ill-conditioned. In 

preconditioning, the conjugate gradient method is not applied directly to the given matrix 

𝐴 , but to another positive definite matrix which has a smaller condition number [5]. We 

have to choose this preconditioning in such a way that once the solution to this new system 

is found it will easy to obtain the solution to the original system. To maintain the positive 

definiteness of the resulting, we need to multiply on both the sides by a non-singular 

matrix. and this matrix defined as 𝐶 −1. 

 

4 Method of Preconditioning[1, 2, 24]  

Consider,  

 𝐴 = 𝐶 −1𝐴 (𝐶 −1)𝑡 , (59) 

with 𝐴  has a lower condition number than 𝐴 . For the simplification, we use the matrix 

notation 𝐶 −𝑡 ≡ (𝐶 −1)𝑡 . 

Now, we will consider the conjugate applied to 𝐴 . 

Consider the linear system  

 𝐴 𝑥 = 𝑏 , (60) 

where, 𝑥 = 𝐶 𝑡 𝑥  and 𝑏 = 𝐶 −1𝑏 , then  

 𝐴 𝑥 = (𝐶 −1𝐴𝐶 −𝑡 )(𝐶 𝑡 𝑥 ) = 𝐶 −1𝐴𝑥 . 
Thus, we could solve 𝐴 𝑥 = 𝑏  for 𝑥  and then obtain 𝑥  by multiplying by 𝐶 −𝑡 . Since,  

 𝑥 
(𝑘 )

= 𝐶 𝑡 𝑥 (𝑘 ), 
 we have,  

 𝑟 
(𝑘 )

= 𝑏 − 𝐴 𝑥 
(𝑘 )

= 𝐶 −1𝑟 (𝑘 ). (61) 

 Let,  

 𝑣 
(𝑘 )

= 𝐶 𝑡 𝑣 (𝑘 ), 
 and  

 𝑤(𝑘 ) = 𝐶 −1𝑟 (𝑘 ), 
 then  

 𝑠 𝑘 =
〈𝑟 

(𝑘 )
,𝑟 

(𝑘 )
〉

〈𝑟 
(𝑘 −1)

,𝑟 
(𝑘 −1)

〉
=

〈𝑤(𝑘 ),𝑤(𝑘 )〉

〈𝑤(𝑘 −1),𝑤(𝑘 −1)〉
. (62) 

 Also,  

 𝑡 𝑘 =
〈𝑟 

(𝑘 −1)
,𝑟 

(𝑘 −1)
〉

〈𝑣 
(𝑘 )

,𝐴 𝑣 
(𝑘 )

〉
=

〈𝑤(𝑘 −1),𝑤(𝑘 −1)〉

〈𝐶 𝑡 𝑣 (𝑘 ),𝐶−1𝐴𝑣 (𝑘 )〉
, (63) 

 now,  

 〈𝐶 𝑡 𝑣 (𝑘 ),𝐶 −1𝐴𝑣 (𝑘 )〉 = [𝐶 𝑡 𝑣 (𝑘 )]𝑡 𝐶 −1𝐴𝑣 (𝑘 ) = 〈𝑣 (𝑘 ),𝐴𝑣 (𝑘 )〉, (64) 

 then we get,  

http://www.ijmra.us/


 ISSN: 2320-0294Impact Factor: 6.765  

 

16 International journal of  Engineerin, Science and Mathematicsg 

http://www.ijmra.us, Email: editorijmie@gmail.com 

 

 𝑡 𝑘 =
〈𝑤(𝑘 −1),𝑤(𝑘 −1)〉

〈𝑣 (𝑘 ),𝐴𝑣 (𝑘 )〉
. (65) 

 Further,  

 𝑥 
(𝑘 )

= 𝑥 
(𝑘 −1)

+ 𝑡 𝑘 𝑣 
(𝑘 )

= 𝑥 (𝑘 −1) + 𝑡 𝑘 𝑣
(𝑘 ). (66) 

 Now,  

 𝑟 
(𝑘 )

= 𝑟 
(𝑘 −1)

− 𝑡 𝑘 𝐴 𝑣 
(𝑘 )

= 𝑟 (𝑘 −1) − 𝑡 𝑘 𝐴𝑣 (𝑘 ). (67) 

 Finally,  

 𝑣 
(𝑘 +1)

= 𝑟 
(𝑘 )

+ 𝑠 𝑘 𝑣 
(𝑘 )

, 

 𝐶 𝑡 𝑣 (𝑘 +1) = 𝐶 −1𝑟 (𝑘 ) + 𝑠 𝑘 𝐶
𝑡 𝑣 (𝑘 ), 

 𝑣 (𝑘 +1) = 𝐶 −𝑡 𝐶 −1𝑟 (𝑘 ) + 𝑠 𝑘 𝑣
(𝑘 ), 

 𝑣 (𝑘 +1) = 𝐶 −𝑡 𝑤(𝑘 ) + 𝑠 𝑘 𝑣
(𝑘 ). (68) 

The preconditioned conjugate gradient method depends on using the equations with the 

order (65), (66), (67), (62) and (68). 

 

 Example 

  

 44𝑥 1 + 3𝑥 2 = 24, 
 3𝑥 1 + 4𝑥 2 − 𝑥 3 = 30, (69) 

 −𝑥 2 + 4𝑥 3 = −24. 

has the exact solution 𝑥 ∗ = (3,4,−5)𝑡 . Use the conjugate gradient method with 𝑥 (0) =
(0,0,0)𝑡  and no preconditioning, that is 𝐶 = 𝐶 −1 = 𝐼 .  

Solution: The system (69) can be written in the form of coefficient matrix,  

 𝐴 =  4 3 0 3 4 − 1 0 − 1 4  . (70) 

  

 𝑟 (0) = 𝑏 − 𝐴𝑥 (0), 
 =  24 30 − 24  𝑡 −  4 3 0 3 4 − 1 0 − 1 4   0 0 0  , 

 𝑟 (0) = 𝑏 =  24,30,−24  𝑡 . (71) 

  

 𝑤1 = 𝐶 −1𝑟 (0), 
 =  1 0 0 0 1 0 0 0 1   24 30 − 24  , 
 𝑤1 =  24,30,−24  𝑡 . (72) 

  

 𝑣 (1) = 𝐶 −𝑡 𝑤1, 
 =  1 0 0 0 1 0 0 0 1   24 30 − 24  , 

 𝑣 (1) =  24,30,−24  𝑡 . (73) 

  

 𝛼1 = 〈𝑤1,𝑤1〉 = 2052. (74) 

  

 𝑢 1 = 𝐴𝑣 (1) =  4 3 0 3 4 − 1 0 − 1 4   24 30 − 24  , 
 𝑢 1 =  186,216,−126  𝑡 . (75) 

  

 〈𝑣 (1),𝑢 1〉 =  24 30 − 24   186 216 − 126  , 

 〈𝑣 (1),𝑢 1〉 = 13968. 
  

 𝑡 1 =
𝛼 1

〈𝑣 (1),𝑢 1〉
=

2052

13968
= 0.146907216. (76) 
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 𝑥 (1) = 𝑥 (0) + 𝑡 1𝑣
(1), 

 =  0,0,0  𝑡 + (0.146907216) 24,30,−24  𝑡 , 

 𝑥 (1) =  3.525773184,4.40721648,−3.525773184  𝑡 . (77) 

continuing like this, we get  

 𝑥 (2) =  2.85801113,4.148971948,−4.954222161  𝑡 . (78) 

 𝑥 (3) =  3.000285002,3.999700826,−5.000091911  𝑡 . (79) 

This is the required solution for the given linear system. 

As we use earlier, 𝐶 = 𝐶 −1 = 𝐼  as a preconditioning, now we use another 

preconditioning 𝐷−
1

2 to represent the diagonal matrix whose entries are the reciprocals of 

the square roots of the diagonal entries of the coefficient matrix. We are using this as 

preconditioning because the matrix 𝐴  is positive definite, we expect the eigenvalues of 

𝐷−
1

2𝐴𝐷−
1

2 to be close to 1. 

From the Table: 1.1, it is clear that approximate solutions are nearly the exact solution, thus 

rounding error does not significantly effect the results[15].  

 

 

 

5 Conclusion 

In this paper, we have discussed about Conjugate Gradient method using orthogonal 

vectors, for symmetric positive definite linear system of equations. Also method of 

Preconditioning has been discussed in detail. Comparison of these method is done based on 

the number of iterations and faster convergence. Thus we have observed that the 

preconditioned conjugate gradient method is more preferred when the system is large 

because it gives less number of iterations and converge faster. A numerical examples for 

each method are provided with the purpose to illustrate the simplicity of the method, 

Further numerical results are compared with the results generated with FOSS tool 

[28]Scilab. 

 

Table: 1.1 Error analysis[14] of Conjugate Gradient Method using preconditioning 

  

 No. of iteration  𝑥 ∗   𝑥 (𝑘 )   Error  

 3   (3, 4, -5) (3.000285002,3.999700826, -5.000091911)   (0.000285,0.000299, .000091) 
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