Pravin Kumar Singh
(Research Scholar)
P.G. Department of Mathematics L.N.M.U. Darbhanga (Bihar)

Abstract

In order to answer a question motivated by constructing substitution boxes in block ciphers we will exhibit an infinite family of full-rank factorizations of elementary 2 -groups into two factors having equal sizes.

Keywords

Factorization of Finite Abelian Groups, Elementary 2-Groups,
Full-Rank Subsets, Full-Rank Factorizations

1. Introduction

We will use multiplicative notation in connection with abelian groups. Let G be a finite abelian group. The product A1 \cdots An of the subsets
$\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{n}}$ of G is defined to be the set of the elements
$a_{1} \cdots a_{n}, \quad a_{1} \in A_{1}, \ldots, a_{n} \in A_{n}$.

The product A1
\cdots An is called a direct product if $\quad a_{1} \cdots a_{n}=a_{1}^{\prime} \cdots a_{n}^{\prime}, \quad a_{1}, a_{1}^{\prime} \in A_{1}, \ldots, a_{n}, a_{n}^{\prime} \in A_{n}$
imply that $a_{1}=a_{1}^{\prime}, \ldots, a_{n}=a_{n}^{\prime}$. Let B be a subset of G. If the product $A_{1} \cdots A_{n}$ is direct and it is equal to B, then we say that B is factored into the subsets A_{1}, \ldots, A_{n} or equivalently we say that the equation $B=A_{1} \cdots A_{n}$ is a factorization of B. In
algebra books the most commonly occurring situation is when an entire abelian group is factored into a direct product of its subgroups.
The span of a subset A of G is the smallest subgroup of G that contains A. The span of A is denoted by $\langle A\rangle$. A subset A of G is called normalized if the identity element e of G is an element of A. If A is a normalized subset of G for which $\langle A\rangle=G$, then we say that A is a full-rank subset of G. A factorization $G=A 1$...An is called a full-rank factorization if each factor is a full-rank subset of G. Full-rank factorizations of finite abelian groups are intimately connected with the theory of error correcting, variable length codes andcryptography. For further details see for instance [1-4], respectively. Let p be a prime. The direct product of n isomorphic copies of a cyclic group of order p is an abelian group and it is called an elementary pgroup of rank n. In a letter Professor Claude Carlet asked me if there were full-rank factorizations of elementary 2-groups into two factors of equal sizes [5]. He could use such a factorization for constructing substitution boxes, or S-boxes, in block ciphers.
The next few words try to explain how the
is built from a full-rank factorization. For $F: F_{2}^{2 n} \rightarrow F_{2}^{2 n}$ by $F\left(\left(a_{1}, a_{2}\right)\right)=$ more detail the reader should consult with [6]. Let $G=A_{1} A_{2}$ be a full-rank factorization of the elementary 2 -group G of rank $2 n$ such that $\left|A_{1}\right|=\left|A_{2}\right|=2^{n}$. Let F_{2} be the finite $\pi_{1}: F_{2}^{n} \rightarrow A_{1}$ and $\pi_{2}: F_{2}^{n} \rightarrow A_{2}$ Galois field with two elements and let
be bijectivemaps. Using π_{1} and π_{2} we define $\pi_{1}\left(\mathrm{a}_{1}\right)+\pi_{2}\left(\mathrm{a}_{2}\right)$. The fact that the factorization $G=A_{1} A_{2}$ is a full-rank factorization is a necessary condition that the S-box has a non-zero linearity. The non-linearity of the S-box is the desired property with cryptographic significance. (Problem 3 in Section 3 at the end of the paper is related to this issue.) The group theoretic argument we use to prove Theorem 1 does not give any useful hint how to increase the degree of nonlinearity. It seems that more sophisticated techniques like polynomial type reasoning required.In this note we will construct full-rank factorizations $G=A B$ of the elementary 2-group G of rank 6 n , where $|\mathrm{A}|=|\mathrm{B}|$ and $\mathrm{n} \geq 3$.

2. A Construction

The main result of this paper is the following theorem.

Theorem 1. If $n \geq 3$, then the elementary 2-group of rank $6 n$ admits full-rank factorization into two factors of equal sizes.

Proof. Let n be an integer such that $\mathrm{n} \geq 3$. Let G be an elementary 2-group of rank $6 n$ with basis elements
$x_{1,1}, \ldots, x_{1,6}, \ldots, x_{n}, 1, \ldots, x_{n}, 6$.
Let

$$
\begin{aligned}
H_{i} & =\left\langle x_{i, 1}, x_{i, 2}, x_{i, 3}\right\rangle, \\
K_{i} & =\left\langle x_{i, 4}, x_{i, 5}, x_{i, 6}\right\rangle, \\
L_{i} & =\left\langle x_{i, 1}, \ldots, x_{i, 6}\right\rangle,
\end{aligned}
$$

for each $\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}$. It is clear that $\left|\mathrm{H}_{\mathrm{i}}\right|=\left|\mathrm{K}_{\mathrm{i}}\right|=2^{3}=8$. Further it is clear that the product $\mathrm{H}_{\mathrm{i}} \mathrm{K}_{\mathrm{i}}$ is direct and it is equal to L_{i} for each $\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}$.

From the subgroup Hi of G we construct a subset Ai of G by removing and adding certain elements.

Remove :	Add :
$x i, 1$	$x i, 1 x i, 4$
$x i, 2$	$x i, 2 x i, 5$
$x i, 3$	$x i, 3 x i, 6$

In other words we set
$A_{i}=\left(H_{i} \backslash\left\{\mathrm{x}_{\mathrm{i}}, 1, \mathrm{x}_{\mathrm{i}}, 2, \mathrm{x}_{\mathrm{i}}, 3\right\}\right) \cup\left\{\mathrm{x}_{\mathrm{i}, 1} \mathrm{x}_{\mathrm{i}, 4}, \mathrm{x}_{\mathrm{i}}, 2 \mathrm{X}_{\mathrm{i}}, 5, \mathrm{xi},{ }_{3} \mathrm{X}_{\mathrm{i}}, 6\right\}$,
for each $\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}$.
We claim that the product $A_{i} K_{i}$ is direct and it is equal to L_{i} for each $i, 1 \leq i \leq n$. As the product HiKi is direct and it is equal to Li it follows that the sets $h_{i} K_{i}, \quad h_{i} \in H_{i}$
(1) form a partition of L_{i}. We have constructed A_{i} from H_{i} by removing elements and adding elements. In the partition (1) we replace the set $\mathrm{x}_{\mathrm{i}, 1} \mathrm{~K}_{\mathrm{i}}$ by the set $\mathrm{x}_{\mathrm{i}, 1} \mathrm{X}_{\mathrm{i}, 4} \mathrm{~K}_{\mathrm{i}}$. Note that $\mathrm{xi}_{4} \mathrm{~K}_{\mathrm{i}}=\mathrm{K}_{\mathrm{i}}$ as $\mathrm{x}_{\mathrm{i}, 4} \in \mathrm{~K}_{\mathrm{i}}$. Ingeneral,

$$
\begin{aligned}
x_{i, 1} K_{i} & =x_{i, 1} x_{i, 4} K_{i}, \\
x_{i, 2} K_{i} & =x_{i, 2} x_{i, 5} K_{i}, \\
x_{i, 3} K_{i} & =x_{i, 3} x_{i, 6} K_{i},
\end{aligned}
$$

and so the sets
$\mathrm{a}_{\mathrm{i}} \mathrm{K}_{\mathrm{i}}, \mathrm{a}_{\mathrm{i}} \in \mathrm{A}_{\mathrm{i}}$
form a partition of Li. The partition (2) is equivalent to that the product $\mathrm{A}_{\mathrm{i}} \mathrm{K}_{\mathrm{i}}$ is direct and it is equal to L_{i}, as required. Let

$$
\mathrm{A}=\mathrm{A}_{1} \cdots \mathrm{~A}_{\mathrm{n}}, \quad \mathrm{~K}=\mathrm{K}_{1} \cdots \mathrm{~K}_{\mathrm{n}} .
$$

We claim that the product AK is direct and it is equal to G . Indeed,

$$
\begin{aligned}
G & =L_{1} \cdots L_{n} \\
& =\left(A_{1} K_{1} \cdots\left(A_{n} K_{n}\right)\right. \\
& =\left(A_{1} \cdots A_{n}\right)\left(K_{1} \cdots K_{n}\right) \\
& =A K .
\end{aligned}
$$

direct and it is equal to
Thus the product AK is G, as required. In particular the product $A_{1} \cdots A_{n}$ is direct and so $|A|=\left|A_{1}\right| \cdots\left|A_{n}\right|$ =
$\left(2^{3}\right) n=2^{3} n$. In the above argument we used the observation that if the product AiKi is direct and is equal to L_{i} and if the product $L_{1} \cdots L_{n}$ is direct and is equal to G, then the product $A_{1} K_{1} \cdots A_{n} K_{n}$ is direct and is equal to G.
Next we claim that $\left\langle A_{i}\right\rangle=L_{i}$ for each ${ }_{i}, 1 \leq i \leq n$. As $x_{i, 2} x_{i, 3} \in A_{i}$ and $x_{i}, 1 x_{i}, 2 x_{i}, 3$ $\in A_{i}$, it follows that $\mathrm{x}_{\mathrm{i}, 1} \in\left\langle\mathrm{~A}_{\mathrm{i}}\right\rangle$. As $\mathrm{x}_{\mathrm{i}, 1} \mathrm{X}_{\mathrm{i}, 4} \in \mathrm{~A}_{\mathrm{i}}$ and $\mathrm{x}_{\mathrm{i}, 1} \in\left\langle\mathrm{~A}_{\mathrm{i}}\right\rangle$, it follows that $\mathrm{x}_{\mathrm{i}, 4} \in\left\langle\mathrm{~A}_{\mathrm{i}}\right\rangle$. A similar reasoning gives that in general

$\mathrm{x}_{\mathrm{i}, 1}, \mathrm{x}_{\mathrm{i}, 4}$	ϵ	$\left\langle\mathrm{~A}_{\mathrm{i}}\right\rangle$,
$\mathrm{x}_{\mathrm{i}, 2}, \mathrm{X}_{\mathrm{i}}, 5$	ϵ	$\left\langle\mathrm{~A}_{\mathrm{i}}\right\rangle$,
$\mathrm{x}_{\mathrm{i}, 3,}, \mathrm{x}_{\mathrm{i}, 6}$	\in	$\left\langle\mathrm{~A}_{\mathrm{i}}\right\rangle$.

Thus $\left\langle\mathrm{A}_{\mathrm{i}}\right\rangle=\mathrm{L}_{\mathrm{i}}$, as we claimed.
Since $e \in A_{1}, \ldots, e \in A_{n}$, we get that $A_{1}, \ldots, A_{n} \subset A_{1} \ldots .$. Alt follows that $\langle A\rangle=G$. In other words A is a full-rank subset of .
Let f be the cyclic permutation of the numbers $1, \ldots, \mathrm{n}$ defined by

From the

$$
\left[\begin{array}{ccccc}
1 & 2 & \ldots & n-1 & n \\
f(1) & f(2) & \cdots & f(n-1) & f(n)
\end{array}\right]=\left[\begin{array}{ccccc}
1 & 2 & \ldots & n-1 & n \\
2 & 3 & \ldots & n & 1
\end{array}\right]
$$

subgroup K of G we construct a subset B of G . We do this by removing certain
subsets from K and adding certain subsets to K .

$$
\begin{gathered}
\text { Remove : Add : } \\
x_{i, 4} K_{f(i)} x_{i, 4} x_{f(i), 1} K_{f(i)} \\
x_{i, 5} K_{f(i)} x_{i, 5} x_{f(i), 2} K_{f(i)} x_{i, 6} K_{f(i)} x_{i, 6} x_{f(i), 3} K_{f(i)}
\end{gathered}
$$

We claim that

$$
\begin{align*}
x_{i, 4} K_{f(i)} A= & x_{i, 4} x_{f(i), 1} K_{f(i)} A, \tag{3}\\
& x_{i, 5} K_{f(i)} A=x_{i, 5 x f(i) 2} K_{f(i)} A, \tag{4}\\
& x_{i, 6} K_{f(i)} A=x_{i, 6} x_{f(i), 3} K_{f(i)} A, \tag{5}
\end{align*}
$$

for each ${ }_{\mathrm{i},} 1 \leq_{\mathrm{i}} \leq_{\mathrm{n}}$. There are 3 n equations to check. But the number of essentially distinct cases can be reduced to 3 . For the sake of definiteness we verify the first equation. We compute the left hand side and we compute the right hand side.

$$
\begin{aligned}
x_{i, 4} K_{f(i)} A & =x_{i, 4} K_{f(i)}\left(A_{1} \cdots A_{n}\right) \\
& =x_{i, 4}\left(K_{f(i)} A_{f(i)}\right) \bar{A}_{f(i)} \\
& =x_{i, 4} L_{f(i)} \bar{A}_{f(i)}
\end{aligned}
$$

Here
$\mathrm{A}_{\mathrm{f}(\mathrm{i})} \quad$ is
computed in the following way. We delete $\mathrm{A}_{\mathrm{fi})}$ from the list $\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{n}}$ and multiply the remaining sets.

$$
\begin{align*}
x_{i, 4} x_{f(i), 1} K_{f(i)} A & =x_{i, 4} x_{f(i), 1} K_{f(i)}\left(A_{1} \cdots A_{n}\right) \\
& =x_{i, 4} x_{f(i), 1}\left(K_{f(i)} A_{f(i)}\right) \bar{A}_{f(i)} \\
& =x_{i, 4} x_{f(i), 1} L_{f(i)} \bar{A}_{f(i)} \\
& =x_{i, 4} L_{f(i)} \bar{A}_{f(i)} \tag{3n}
\end{align*}
$$

The last step hinges on the fact that $\mathrm{x}_{\mathrm{f}(\mathrm{i}), 1} \in \mathrm{~L}_{\mathrm{ff}(\mathrm{i})}$ and so $\mathrm{x}_{\mathrm{ff}), 1} \mathrm{~L}_{\mathrm{ff}(\mathrm{i})}=\mathrm{L}_{\mathrm{f}(\mathrm{i})}$. The remaining cases can be settled in an analogous way. We claim that the sets
$x_{i} 4 K_{f}(i) A$,
$x_{i} 5 K_{f}(i) A$,
$x i, 6 K_{f}(i) A$
are pair-wise disjoint. This claim is of course the same as the claim that the sets $x i, 4 x f(i), 1 K f(i) A$,
$x i, 5 x f(i), 2 K f(i) A$,

$x i, 6 x f(i), 3 K f(i) A$	
450	International Journal of Engineering, Science and Mathematics
http://www.ijesm.co.in, Email: ijesmj@gmail.com	

are pair-wise disjoint. There are $3 n$ sets and we claim that $\left(\frac{3 n}{2}\right)$ pairs of sets are disjoint. However, the number of the essentially different cases is not morethan $\left(\frac{8}{2}\right)=28$.

In order to prove the claim let us assume on the contrary that two distinct subsets are not disjoint. Among the many possible cases let us consider the following case first.
$\mathrm{x}_{\mathrm{i}, 4} \mathrm{~K}_{\mathrm{f}(\mathrm{i})} \mathrm{A} \cap \mathrm{x}_{\mathrm{i}, 5} \mathrm{~K}_{\mathrm{f}(\mathrm{i})} \mathrm{A}=\varnothing \quad \emptyset$
It follows that

$$
\begin{gathered}
x_{i, 4}\left(K_{f(i)} A_{f(i)}\right) \bar{A}_{f(i)} \cap x_{i, 5}\left(K_{f(i)} A_{f(i)}\right) \bar{A}_{f(i)} \neq \emptyset \\
x_{i, 4} L_{f(i)} \bar{A}_{f(i)} \cap x_{i, 5} L_{f(i)} \bar{A}_{f(i)} \neq \emptyset
\end{gathered}
$$

For the sake of definiteness suppose that $f_{(i)}=1$. Consequently, $\mathrm{i}=\mathrm{n}$ and

$$
\mathrm{x}_{\mathrm{n}, 4} \mathrm{~L}_{1} \mathrm{~A}_{1} \cap \mathrm{x}_{\mathrm{n}, 5} \mathrm{~L}_{1} \mathrm{~A}_{1} \Rightarrow \quad \emptyset
$$

There are elements $l_{1}, l_{1}^{\prime} \in L_{1}$ and

$$
a_{1}, a_{1}^{\prime} \in A_{1}, \ldots, a_{n}, a_{n}^{\prime} \in A_{n}
$$

such that

$$
l_{1} a_{2} \cdots a_{n} x_{n, 4}=l_{1}^{\prime} a_{2}^{\prime} \cdots a_{n}^{\prime} x_{n, 5}
$$

Using the fact that the product $\mathrm{L} 1 \cdots \mathrm{Ln}$ is direct and that
$\mathrm{A}_{1} \subset \mathrm{~L}_{1}, \ldots, \mathrm{~A}_{\mathrm{n}} \subset \mathrm{L}_{\mathrm{n}}$
we get that

$$
l_{1}=l_{1}^{\prime}, a_{2}=a_{2}^{\prime}, \ldots, a_{n-1}=a_{n-1}^{\prime}, a_{n} x_{n, 4}=a_{n}^{\prime} x_{n, 5}
$$

The last equation means that $A_{n} x_{n}, 4 \cap A_{n} x_{n}, 5 \neq \emptyset$. On the other hand after listing the elements of $A_{n} x_{n}, 4$ and $A_{n} x_{n}, 5$ a routine inspection reveals that $A_{n} x_{n, 4} \cap$ $\mathrm{A}_{\mathrm{n}} \mathrm{X}_{\mathrm{n}, 5}=\emptyset$. The details of the inspection are listed in Table 1. Let us consider another case among the many possibilities.

International Journal of Engineering, Science and Mathematics (UGC Approved)

Vol. 6 Issue 8, December 2017,
ISSN: 2320-0294 Impact Factor: 6.765
Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed \& Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gate as well as in Cabell’s Directories of Publishing Opportunities, U.S.A

Table 1. The elements of the subsets $H_{n}, A_{n}, A_{n} x_{n}, 4, A_{n} x_{n}, 5$.

H_{n}	A_{n}	$A_{n} x_{n, 4}$	$A_{n} x_{n, 5}$
e	e	$x_{n, 4}$	$x_{n, 5}$
$x_{n, 1}$	$x_{n, 1} x_{n, 4}$	$x_{n, 1}$	$x_{n, 1} x_{n, 4} x_{n, 5}$
$x_{n, 2}$	$x_{n, 2} x_{n, 5}$	$x_{n, 2} x_{n, 5} x_{n, 4}$	$x_{n, 2}$
$x_{n, 3}$	$x_{n, 3} x_{n, 6}$	$x_{n, 3} x_{n, 6} x_{n, 4}$	$x_{n, 3} x_{n, 6} x_{n, 5}$
$x_{n, 1} x_{n, 2}$	$x_{n, 1} x_{n, 2}$	$x_{n, 1} x_{n, 2} x_{n, 4}$	$x_{n, 1} x_{n, 2} x_{n, 5}$
$x_{n, 1} x_{n, 3}$	$x_{n, 1} x_{n, 3}$	$x_{n, 1} x_{n, 3} x_{n, 4}$	$x_{n, 1} x_{n, 3} x_{n, 5}$
$x_{n, 2} x_{n, 3}$	$x_{n, 2} x_{n, 3}$	$x_{n, 2} x_{n, 3} x_{n, 4}$	$x_{n, 2} x_{n, 3} x_{n, 5}$
$x_{n, 1} x_{n, 2} x_{n, 3}$	$x_{n, 1} x_{n, 2} x_{n, 3}$	$x_{n, 1} x_{n, 2} x_{n, 3} x_{n, 4}$	$x_{n, 1} x_{n, 2} x_{n, 3} x_{n, 5}$

$\mathrm{x}_{\mathrm{i}, 4} \mathrm{~K}_{\mathrm{f}(\mathrm{i})} \mathrm{A} \cap \mathrm{x}_{\mathrm{j}, 4} \mathrm{~K}_{\mathrm{f}(\mathrm{j})} \mathrm{A} \Rightarrow \quad \emptyset$
It follows that

$$
\mathrm{x}_{\mathrm{i}, 4} \mathrm{~L}_{\mathrm{f}(\mathrm{i})} \mathrm{A}_{\mathrm{f}(\mathrm{i})} \cap \mathrm{x}_{\mathrm{j}, 4} \mathrm{~L}_{\mathrm{f}(\mathrm{j})} \mathrm{A}_{\mathrm{f}(\mathrm{j})}=1
$$

In order to avoid unnecessary notational difficulties let us suppose that $f_{(i)}=1, i$ $=n, f(j)=3, j=2$. Now

$$
\mathrm{x}_{\mathrm{n}, 4} \mathrm{~L}_{1} \mathrm{~A}_{1} \cap \mathrm{x}_{2,4} \mathrm{~L}_{3} \mathrm{~A}_{3}=\varnothing \quad \emptyset
$$

There are elements
and (6) such
that

$$
l_{1} a_{2} \cdots a_{n} x_{n, 4}=l_{3}^{\prime} a_{1}^{\prime} a_{2}^{\prime} a_{4}^{\prime} \cdots a_{n}^{\prime} x_{2,4}
$$

It follows that
$l_{1}=a_{1}^{\prime}, a_{2}=a_{2}^{\prime} x_{2,4}, a_{3}=l_{3}^{\prime}, a_{4}=a_{4}^{\prime}, \ldots, a_{n-1}=a_{n-1}^{\prime}, a_{n} x_{n, 4}=a_{n}^{\prime}$
The last equation means that $A_{n} x_{n}, 4 \cap A_{n}=\emptyset$. On the other hand after listing the elements of $A_{n} x_{n}, 4$ and A_{n} a routine inspection reveals that $A_{n} x_{n}, 4 \cap A_{n}=\varnothing$.

A similar argument can be used in connection with all the remaining cases.
We claim that the product AB is direct and it is equal to G . In order to verify the claim note that the sets

Ak, $\quad k \in K$ (7)
form a partition of G . We have constructed B from K by replacing certain subsets Ak by certain subsets Ab. Using the Equations (3), (4), (5) we can see
that the sets
$\mathrm{Ab}, \quad \mathrm{b} \in \mathrm{B}(8)$
form a partition of G. Partition (8) simply means that the product $A B$ is direct and it is equal to G , as required.
From the above result it follows that $|B|=|K|=\left|K_{1}\right| \cdots\left|K_{n}\right|=2^{3 n}$. The point we would like to stress is that $|\mathrm{A}|=|\mathrm{B}|$ holds.

We claim that $\langle B\rangle=G$. Since $X_{i}, 5 x_{i}, 6 \in B$ and $x_{i, 4} X_{i, 5} X_{i, 6} \in B$, it follows that $x_{i}, 4 \in\langle B\rangle$. As $x_{i}, 4 \in\langle B\rangle$ and $x i, 4 x_{f(i)}, 1 \in B$, it follows that $x_{f(i)}, 1 \in\langle B\rangle$. In general
$\mathrm{X}_{\mathrm{i}, 4, \mathrm{X}_{\mathrm{f}(\mathrm{i}), 1} \in\langle\mathrm{~B}\rangle, ~}^{\text {, }}$
$\mathrm{X}_{\mathrm{i}}, 5, \mathrm{X}_{\mathrm{f}(\mathrm{i}), 2} \in\langle\mathrm{~B}\rangle$,
$\mathrm{X}_{\mathrm{i}, 6}, \mathrm{X}_{\mathrm{f}(\mathrm{i}), 3} \in\langle\mathrm{~B}\rangle$,
for each $\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}$. Thus $\langle\mathrm{B}\rangle=\mathrm{G}$, as required. In other words B is a full-rank subset of G.

3. Open Problems

We close the paper with a number of open problems. The smallest elementary 2 -group G for which the construction of the paper works has 2^{18} elements and so the factors A and B have 2^{9} elements. The word length in the commonly used computers is a power of 2 . Professor C. Carlet has advanced the following problem.

Problem 1. Is there a full-rank factoring $G=A B$ of the elementary 2-group G of order 2^{16} with $|\mathrm{A}|=|\mathrm{B}|$?

Here is a more ambitious problem.
Problem 2. Determine the minimum order of all elementary abelian 2-groups that admit full-rank factorizations with equal size factors.

In cryptography not the full-rank property of the factors is the key concept but rather the non-linearity of the factors.

Problem 3. In a factorization $G=A B$ of an elementary 2-group with $|A|=|B|$ try to maximize the deviation of the factors from linearity.

The next questions are motivated by pure group theoretical curiosity.
Problem 4. Can a finite abelian 2-group be factored into more than two fullrank factors of equal size?

Problem 5. Can a finite abelian p-group be factored into full-rank factors of equal size?

Conflicts of Interest

The author declares no conflicts of interest regarding the publication of this paper.

References

[1] Dinitz, M. (2006) Full Rank Tilings of Finite Abelian Groups.SIAM Journal on Discrete \quad Mathematics, 20, 160-170. https://doi.org/10.1137/S0895480104445794
[2] Etzion, T. and Vardy, A. (1998) On Perfect Codes and Tilings: Problems and Solutions. SIAM Journal on Discrete Mathematics, 11, 205-223. https://doi.org/10.1137/S0895480196309171
[3] Qu, M.H. and Venstone, S.A. (1994) Factorizations in the Elementary Abelian p-Groups and Their Cryptographic Significance. Journal of Cryptography, 7, 201-212. https://doi.org/10.1007/BF00203963
[4] Szab'o, S. (2006) Completing Codes and the R'edei Property of Groups. Theoretical Computer Science, 359, 449-454. https://doi.org/10.1016/j.tcs.2006.02.002
[5] Carlet, C. and Youssef, A. Building S-Boxes from Full-Rank Factorization of an Elementary 2-Group. Private Communication.
[6] Carlet, C. (2010) Vectorial Boolean Functions for Cryptography. In: Crama, Y., Ed., Boolean Models and Methods in Mathematics, Computer Science, and Engineering, Cambridge University Press, Cambridge, 398-470.
https://doi.org/10.1017/CBO9780511780448.012

