CHARACTERIZATION OF INTUITIONISTIC MULTI-FUZZY NORMAL SUBGROUP

S.Balamurugan
Department of Mathematics, Velammal College of Engineering \& Technology, Madurai-625 009, Tamilnadu, India.

Abstract

For any intuitionistic multi-fuzzy set $A=\left\{\left\langle x, \mu_{A}(x), v_{A}(x)\right\rangle: x \in X\right\}$ of an universe set X, we study the crisp multi-set $\left\{x \in X: \mu_{i}(x) \geq \alpha_{i}, v_{i}(x) \leq \beta_{i}, \forall i\right\}$ of X. In this paper, an attempt has been made to study some algebraic nature of intuitionistic multi-fuzzy normal subgroup and their properties are discussed.

Keywords Intuitionistic fuzzy set (IFS), Intuitionistic multi-fuzzy set (IMFS), Intuitionistic multi-fuzzy subgroup (IMFSG), Intuitionistic multi-fuzzy normal subgroup (IMFNSG).

Mathematics Subject Classification 20N25, 03E72, 08A72, 03F55, 06F35, 03G25, 08A05

1. INTRODUCTION

After the introduction of the concept of fuzzy set by Zadeh [14] several researches were conducted on the generalization of the notion of fuzzy set. The idea of intuitionistic fuzzy set was given by Krassimir.T.Atanassov [1]. An intuitionistic fuzzy set is characterized by two functions expressing the degree of membership (belongingness) and the degree of nonmembership (non-belongingness) of elements of the universe to the IFS. Among the various notions of higher-order fuzzy sets, Intuitionistic Fuzzy sets proposed by Atanassov provide a flexible framework to explain uncertainity and vagueness. An element of a multi-fuzzy set can occur more than once with possibly the same or different membership values. In 2011, P.K.Sharma [12] initiated the concept of Intuitionistic fuzzy groups. T.K.Shinoj and Sunil Jacob John [13] was introduced the concept of Intuitionistic multi-fuzzy set in the year of 2013.
R.Muthuraj and S.Balamurugan [8] introduced the new algebraic structure Intuitionistic multifuzzy subgroup in 2014. In this paper we study intuitionistic multi-fuzzy normal subgroup and its properties. This paper is an attempt to combine the two concepts: intuitionistic multi-fuzzy sets and multi-fuzzy subgroups together by introducing a new concept called intuitionistic multifuzzy normal subgroups.

2. PRELIMINARIES

In this section, we site the fundamental definitions that will be used in the sequel.

2.1 Definition [14]

Let X be a non-empty set. Then a fuzzy set $\mu: \mathrm{X} \rightarrow[0,1]$.

2.2 Definition [7, 10, 11]

Let X be a non-empty set. A multi-fuzzy set A of X is defined as $A=\left\{<x, \mu_{A}(x)\right\rangle$: $\mathrm{x} \in \mathrm{X}\}$ where $\mu_{\mathrm{A}}=\left(\mu_{1,} \mu_{2}, \ldots, \mu_{\mathrm{k}}\right)$, that is, $\mu_{\mathrm{A}}(\mathrm{x})=\left(\mu_{1}(\mathrm{x}), \mu_{2}(\mathrm{x}), \ldots, \mu_{\mathrm{k}}(\mathrm{x})\right)$ and $\mu_{\mathrm{i}}: \mathrm{X} \rightarrow[0,1]$, $\forall \mathrm{i}=1,2, \ldots, \mathrm{k}$. Here k is the finite dimension of A. Also note that, for all $\mathrm{i}, \mu_{\mathrm{i}}(\mathrm{x})$ is a decreasingly ordered sequence of elements. That is, $\mu_{1}(x) \geq \mu_{2}(x) \geq \ldots \geq \mu_{k}(x), \forall x \in X$.

2.3 Definition [1]

Let X be a non-empty set. An Intuitionistic Fuzzy Set (IFS) A of X is an object of the form $A=\{\langle x, \mu(x), v(x)\rangle: x \in X\}$, where $\mu: X \rightarrow[0,1]$ and $v: X \rightarrow[0,1]$ define the degree of membership and the degree of non-membership of the element $x \in X$ respectively with $0 \leq \mu(x)$ $+v(\mathrm{x}) \leq 1, \forall \mathrm{x} \in \mathrm{X}$.

2.4 Remark [1]

(i) Every fuzzy set A on a non-empty set X is obviously an intuitionistic fuzzy set having the form $A=\{\langle x, \mu(x), 1-\mu(x)\rangle: x \in X\}$.
(ii) In the definition 2.3, When $\mu(x)+v(x)=1$, that is, when $v(x)=1-\mu(x)=\mu^{c}(x), A$ is called fuzzy set.

2.5 Definition [8, 13]

Let $\mathrm{A}=\left\{<\mathrm{x}, \mu_{\mathrm{A}}(\mathrm{x}), v_{\mathrm{A}}(\mathrm{x})>: \mathrm{x} \in \mathrm{G}\right\}$, where $\mu_{\mathrm{A}}(\mathrm{x})=\left(\mu_{\mathrm{A}_{1}}(\mathrm{x}), \mu_{\mathrm{A}_{2}}(\mathrm{x}), \mu_{\mathrm{A}_{3}}(\mathrm{x}), \ldots \mu_{\mathrm{A}_{k}}(\mathrm{x})\right)$ and $v_{\mathrm{A}}(\mathrm{x})=\left(v_{\mathrm{A}_{1}}(\mathrm{x}), v_{\mathrm{A}_{2}}(\mathrm{x}), v_{\mathrm{A}_{3}}(\mathrm{x}) \ldots v_{\mathrm{A}_{\mathrm{k}}}(\mathrm{x})\right) \quad$ such that $\quad 0 \leq \mu_{\mathrm{A}_{1}}(\mathrm{x})+v_{\mathrm{A}_{1}}(\mathrm{x}) \leq 1, \quad \forall \quad \mathrm{x} \in \mathrm{G} \quad$,

International Journal of Engineering, Science and Mathematics
Vol. 10 Issue 09, September 2021,
ISSN: 2320-0294 Impact Factor: 6.765
Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed \& Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A
$\mu_{\mathrm{A}_{1}}: \mathrm{G} \rightarrow[0,1]$ and $v_{\mathrm{A}_{1}}: \mathrm{G} \rightarrow[0,1]$ for all $\mathrm{i}=1,2, \ldots$, k. Here, $\mu_{\mathrm{A}_{1}}(\mathrm{x}) \geq \mu_{\mathrm{A}_{2}}(\mathrm{x}) \geq \mu_{\mathrm{A}_{3}}(\mathrm{x}) \geq \ldots \geq \mu_{\mathrm{A}_{k}}(\mathrm{x})$, for all $\mathrm{x} \in \mathrm{G}$. That is, $\mu_{\mathrm{A}_{1}}$'s are decreasingly ordered sequence. Then the set A is said to be an intuitionistic multi-fuzzy set (IMFS) with dimension k of G .

2.6 Remark

Note that since we arrange the membership sequence in decreasing order, the corresponding non-membership sequence may not be in decreasing or increasing order.

2.7 Definition [8, 13]

Let $\mathrm{A}=\left\{\left\langle\mathrm{x}, \mu_{\mathrm{A}}(\mathrm{x}), \nu_{\mathrm{A}}(\mathrm{x})\right\rangle: \mathrm{x} \in \mathrm{X}\right\}$ and $\mathrm{B}=\left\{\left\langle\mathrm{x}, \mu_{\mathrm{B}}(\mathrm{x}), \nu_{\mathrm{B}}(\mathrm{x})\right\rangle: \mathrm{x} \in \mathrm{X}\right\}$ be any two IMFS's having the same dimension k of X . Then
(i) $\quad \mathrm{A} \subseteq \mathrm{B}$ if and only if $\mu_{\mathrm{A}}(\mathrm{x}) \leq \mu_{\mathrm{B}}(\mathrm{x})$ and $v_{\mathrm{A}}(\mathrm{x}) \geq \mathrm{v}_{\mathrm{B}}(\mathrm{x})$ for all $\mathrm{x} \in \mathrm{X}$.
(ii) $\quad \mathrm{A}=\mathrm{B}$ if and only if $\mu_{\mathrm{A}}(\mathrm{x})=\mu_{\mathrm{B}}(\mathrm{x})$ and $v_{\mathrm{A}}(\mathrm{x})=v_{\mathrm{B}}(\mathrm{x})$ for all $\mathrm{x} \in \mathrm{X}$.
(iii) $\mathrm{A}^{\mathrm{C}}=\left\{\left\langle\mathrm{x}, v_{\mathrm{A}}(\mathrm{x}), \mu_{\mathrm{A}}(\mathrm{x})\right\rangle: \mathrm{x} \in \mathrm{X}\right\}$
(iv) $\mathrm{A} \cap \mathrm{B}=\left\{\left\langle\mathrm{x},\left(\mu_{\mathrm{A} \cap \mathrm{B}}\right)(\mathrm{x}),\left(\mathrm{v}_{\mathrm{A} \cap \mathrm{B}}\right)(\mathrm{x})\right\rangle: \mathrm{x} \in \mathrm{X}\right\}$ where
$\left(\mu_{\mathrm{A} \cap \mathrm{B}}\right)(\mathrm{x})=\min \left\{\mu_{\mathrm{A}}(\mathrm{x}), \mu_{\mathrm{B}}(\mathrm{x})\right\}=\min \left\{\mu_{\mathrm{A}_{\mathrm{i}}}(\mathrm{x}), \mu_{\mathrm{B}_{\mathrm{i}}}(\mathrm{x})\right\}, \forall \mathrm{i}=1,2, \ldots, \mathrm{k}$ and
$\left(v_{\mathrm{A} \cap \mathrm{B}}\right)(\mathrm{x})=\max \left\{\nu_{\mathrm{A}}(\mathrm{x}), \nu_{\mathrm{B}}(\mathrm{x})\right\}=\max \left\{\nu_{\mathrm{A}_{\mathrm{i}}}(\mathrm{x}), \nu_{\mathrm{B}_{\mathrm{i}}}(\mathrm{x})\right\}, \forall \mathrm{i}=1,2, \ldots, \mathrm{k}$.
(v) $\mathrm{A} \cup \mathrm{B}=\left\{\left\langle\mathrm{x},\left(\mu_{\mathrm{A} \cup \mathrm{B}}\right)(\mathrm{x}),\left(v_{\mathrm{A} \cup \mathrm{B}}\right)(\mathrm{x})\right\rangle: \mathrm{x} \in \mathrm{X}\right\}$ where
$\left(\mu_{\mathrm{A} \cup \mathrm{B}}\right)(\mathrm{x})=\max \left\{\mu_{\mathrm{A}}(\mathrm{x}), \mu_{\mathrm{B}}(\mathrm{x})\right\}=\max \left\{\mu_{\mathrm{A}_{\mathrm{i}}}(\mathrm{x}), \mu_{\mathrm{B}_{\mathrm{i}}}(\mathrm{x})\right\}, \forall \mathrm{i}=1,2, \ldots, \mathrm{k}$ and
$\left(v_{A \cup B}\right)(x)=\min \left\{v_{A}(x), v_{B}(x)\right\}=\min \left\{v_{A_{i}}(x), v_{B_{i}}(x)\right\}, \forall i=1,2, \ldots, k$.
Here $\left\{\mu_{\mathrm{A}_{\mathrm{i}}}(\mathrm{x}), \mu_{\mathrm{B}_{\mathrm{i}}}(\mathrm{x})\right\}$ represents the corresponding $\mathrm{i}^{\text {th }}$ position membership values of A and B respectively. Also, $\left\{v_{A_{i}}(x), v_{B_{i}}(x)\right\}$ represents the corresponding $i^{\text {th }}$ position nonmembership values of A and B respectively.

2.8 Definition [13]

Let A and B be any two IMFS's of groups G_{1} and G_{2} respectively. Then the Cartesian product of A and B is denoted by $A \times B$, of $G_{1} \times G_{2}$ is defined as:

$$
\begin{aligned}
& A \times B=\left\{\left\langle(p, q), \mu_{A \times B}(p, q), \nu_{A \times B}(p, q)>:(p, q) \in G_{1} \times G_{2}\right\}\right. \text { where } \\
& \mu_{A \times B}(p, q)=\min \left\{\mu_{A}(p), \mu_{B}(q)\right\} \text { and } \nu_{A \times B}(p, q)=\max \left\{\nu_{A}(p), \nu_{B}(q)\right\} .
\end{aligned}
$$

2.9 Definition [7, 8]

A mapping f from a group G_{1} into a group G_{2} is said to be a homomorphism if for all a, $b \in G_{1}, f(a b)=f(a) f(b)$.

2.10 Definition [7, 8]

A mapping f from a group G_{1} into a group G_{2} is said to be anti-homomorphism if for all $a, b \in G_{1}, f(a b)=f(b) f(a)$.

2.11 Definition [8]

An intuitionistic multi-fuzzy set (In short IMFS) $\mathrm{A}=\left\{\left\langle\mathrm{x}, \mu_{\mathrm{A}}(\mathrm{x}), v_{\mathrm{A}}(\mathrm{x})\right\rangle: \mathrm{x} \in \mathrm{G}\right\}$ of a group G is said to be an intuitionistic multi-fuzzy subgroup of G (In short IMFSG) if it satisfies :
(i) $\mu_{\mathrm{A}}\left(\mathrm{xy}^{-1}\right) \geq \min \left\{\mu_{\mathrm{A}}(\mathrm{x}), \mu_{\mathrm{A}}(\mathrm{y})\right\}$ and
(ii) $v_{A}\left(\mathrm{xy}^{-1}\right) \leq \max \left\{v_{\mathrm{A}}(\mathrm{x}), v_{\mathrm{A}}(\mathrm{y})\right\}, \forall \mathrm{x}, \mathrm{y} \in \mathrm{G}$.

2.12 Remark [8]

(i) If A is an IFS of a group G, then the complement A^{c} is also an IFS of G.
(ii) A is an IMFSG of a group $G \Leftrightarrow$ for each i , $\operatorname{IFS}\left\{\left\langle\mathrm{x}, \mu_{\mathrm{A}_{\mathrm{i}}}(\mathrm{x}), v_{\mathrm{A}_{\mathrm{i}}}(\mathrm{x})\right\rangle: \mathrm{x} \in \mathrm{G}\right\}$ is an IFSG of group G.

2.13 Theorem [8]

If $\left\{A_{i}: i \in I\right\}$ is a family of intuitionistic multi-fuzzy subgroups of a group G where $\left.A_{i}=\left\{<x, \mu_{A_{i}}(x), v_{A_{i}}(x)\right\rangle: x \in G\right\}$, then $\cap_{i} A_{i}$ is also intuitionistic multi-fuzzy subgroup of G.

2.14 Theorem [8]

Let A and B be any two IMFSG's of a group G. Then A $\cup B$ need not be IMFSG of G.

2.15 Theorem [8]

Let $\mathrm{f}: \mathrm{G}_{1} \rightarrow \mathrm{G}_{2}$ be anonto, homomorphism of groups G_{1} and G_{2}. If $A=\left\{\left\langle x, \mu_{A}(x), v_{A}(x)\right\rangle: x \in G_{1}\right\}$ is an intuitionistic multi-fuzzy subgroup of G_{1}, then $f(A)=\left\{<y, \mu_{f(A)}(y), v_{f(A)}(y)>/ y \in G_{2}\right.$, where $\left.y=f(x)\right\} \quad$ is also an intuitionistic multi-fuzzy subgroup of G_{2}, if μ_{A} has sup property; v_{A} has inf property and $\mu_{\mathrm{A}}, v_{\mathrm{A}}$ are f-invariants.

2.16 Theorem [8]

Let G_{1} and G_{2} be any two groups. Let $\mathrm{f}: \mathrm{G}_{1} \rightarrow \mathrm{G}_{2}$ be a homomorphism of groups. If $\mathrm{B}=$ $\left.\left\{<y, \mu_{B}(y), v_{B}(y)\right\rangle: y \in G_{2}\right\}$ is an IMFSG of G_{2}, then $\quad f^{-1}(B)=$ $\left\{\left\langle x, \mu_{f^{-1}(\mathrm{~B})}(\mathrm{x}), \nu_{\mathrm{f}^{-1}(\mathrm{~B})}(\mathrm{x})\right\rangle: \mathrm{x} \in \mathrm{G}_{1}\right\}$ is also an IMFSG of G_{1}.

2.17 Theorem [8]

Let G_{1} and G_{2} be any two groups. Let $\mathrm{f}: \mathrm{G}_{1} \rightarrow \mathrm{G}_{2}$ be an onto, anti-homomorphism. If A is an IMFSG of G_{1}, then $f(A)$ is also an IMFSG of G_{2} if μ_{A} has sup property; v_{A} has inf property and $\mu_{\mathrm{A}}, v_{\mathrm{A}}$ are f-invariants.

2.18 Theorem [8]

Let G_{1} and G_{2} be any two groups. Let $\mathrm{f}: \mathrm{G}_{1} \rightarrow \mathrm{G}_{2}$ be an anti-homomorphism. If B is an IMFSG of G_{2}, then $f^{-1}(B)$ is also an IMFSG of G_{1}.

2.19 Theorem [8]

Let A and B be any two IMFSG's of groups G_{1} and G_{2} respectively. Then their Cartesian product $A \times B$ is also IMFSG of $G_{1} \times G_{2}$.

2.20 Theorem [8]

Let A be anintuitionistic multi-fuzzy set of a group G and let $\langle A\rangle=\bigcap_{i}\left\{B_{i} / A \subseteq B_{i}\right.$ and B_{i} is an intuitionistic multi-fuzzy subgroup of G$\}$. Then $\langle\mathrm{A}\rangle$ is an intuitionistic multi-fuzzy subgroup of G.

3. Properties of intuitionistic multi-fuzzy normal subgroup

In this section, we introduce the concept of intuitionistic multi-fuzzy normal subgroup (In short IMFNSG) of a group and discussed some of its related properties.

3.1 Definition

An IMFSG A $=\left\{\left\langle x, \mu_{\mathrm{A}}(\mathrm{x}), v_{\mathrm{A}}(\mathrm{x})\right\rangle: \mathrm{x} \in \mathrm{G}\right\}$ of a group G is said to be an intuitionistic multi-fuzzy normal subgroup (In short IMFNSG) of G if it satisfies :
(i) $\mu_{\mathrm{A}}(\mathrm{xy})=\mu_{\mathrm{A}}(\mathrm{yx})$ and
(ii) $v_{\mathrm{A}}(\mathrm{xy})=v_{\mathrm{A}}(\mathrm{yx})$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{G}$.

3.2 Theorem

An IMFSG A of agroup G is said to be an IMFNSG if it satisfies for all $x, g \in G$,

$$
\mu_{\mathrm{A}}\left(\mathrm{~g}^{-1} \mathrm{xg}\right)=\mu_{\mathrm{A}}(\mathrm{x}) \text { and } \nu_{\mathrm{A}}\left(\mathrm{~g}^{-1} \mathrm{xg}\right)=\nu_{\mathrm{A}}(\mathrm{x}) .
$$

Proof: Let $\mathrm{x}, \mathrm{g} \in \mathrm{G}$.

$$
\begin{aligned}
\text { Then } \mu_{A}\left(g^{-1} x g\right) & =\mu_{A}\left(g^{-1}(x g)\right) \\
& =\mu_{A}\left((x g) g^{-1}\right), \text { since } A \text { is IMFNSG of } G . \\
& =\mu_{A}\left(x\left(g^{-1}\right)\right)=\mu_{A}(x e)=\mu_{A}(x) .
\end{aligned}
$$

Now, $\boldsymbol{v}_{\mathrm{A}}\left(\mathrm{g}^{-1} \mathrm{xg}\right)=\boldsymbol{v}_{\mathrm{A}}\left(\mathrm{g}^{-1}(\mathrm{xg})\right)$

$$
\begin{aligned}
& =V_{A}\left((x g) g^{-1}\right) \text {, since A is IMFNSG of G. } \\
& =V_{A}\left(x\left(g^{-1}\right)\right)=V_{A}(x e)=\nu_{A}(x) \text {. Hence the Theorem. }
\end{aligned}
$$

3.3 Theorem

If $\left\{A_{i}: i \in I\right\}$ is a family of IMFNSG's of a group G, then $\underset{i}{\cap} A_{i}$ is also IMFNSG of G.

International Journal of Engineering, Science and Mathematics
Vol. 10 Issue 09, September 2021,
ISSN: 2320-0294 Impact Factor: 6.765
Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed \& Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

Proof: Let $A=\bigcap_{i} A_{i}$.

By Theorem 2.13, $\cap_{i} A_{i}$ is an IMFSG of G.

For any $x, g \in G, \mu_{A}\left(g x g^{-1}\right)=\mu_{\cap A_{i}}\left(g x g^{-1}\right)$

$$
\begin{aligned}
& =\min _{i} \mu_{A_{i}}\left(\mathrm{gxg}^{-1}\right) \\
& =\min _{i} \mu_{\mathrm{A}_{\mathrm{i}}}(x) \\
& =\mu_{\cap \mathrm{A}_{\mathrm{i}}}(x) \\
& =\mu_{\mathrm{A}}(x)
\end{aligned}
$$

That is, $\mu_{\mathrm{A}}\left(\mathrm{gxg}^{-1}\right)=\mu_{\mathrm{A}}(\mathrm{x}), \forall \mathrm{x}, \mathrm{g} \in \mathrm{G}$.

Also,

$$
\begin{aligned}
V_{\mathrm{A}}\left(\mathrm{gxg}^{-1}\right) & =V_{\cap A_{i}}\left(\mathrm{gxg}^{-1}\right) \\
& =\max _{\mathrm{i}} V_{\mathrm{A}_{\mathrm{i}}}\left(\mathrm{gxg}^{-1}\right) \\
& =\max _{\mathrm{i}} V_{A_{i}}(\mathrm{x}) \\
& =V_{\cap A_{i}}(x) \\
& =V_{A}(x)
\end{aligned}
$$

That is, $\quad V_{\mathrm{A}}\left(\mathrm{gxg}^{-1}\right)=V_{\mathrm{A}}(\mathrm{x}), \forall \mathrm{x}, \mathrm{g} \in \mathrm{G}$.

Hence, $A=\cap_{i} A_{i}$ is an IMFNSG of G.

3.4 Theorem

Union of two IMFNSG's of a group G need not be an IMFNSG of G.

Proof:Since, by Theorem 2.14, union of two IMFSG's of a group G need not be an IMFSG of G and hence the proof is clear.

3.5 Theorem

Let A be an IMFNSG of a group G. Then for all $x, y \in G$,
(i) $\quad \mu_{A}(x)<\mu_{A}(y) \Rightarrow \mu_{A}(x)=\mu_{A}(x y)=\mu_{A}(y x)$ and
(ii)

$$
V_{\mathrm{A}}(\mathrm{x})>V_{\mathrm{A}}(\mathrm{y}) \Rightarrow V_{\mathrm{A}}(\mathrm{x})=V_{\mathrm{A}}(\mathrm{xy})=V_{\mathrm{A}}(\mathrm{yx})
$$

Proof: (i)Let A be an IMFNSG of a group G.

$$
\begin{equation*}
\Leftrightarrow \mu_{A}(x y)=\mu_{A}(y x) \text { and } V_{A}(x y)=v_{A}(y x), \forall x, y \in G . \tag{1}
\end{equation*}
$$

Suppose that $\mu_{A}(x)<\mu_{A}(y)$ for some $x, y \in G$.
Then $\mu_{A}(x y) \geq \min \left\{\mu_{A}(x), \mu_{A}(y)\right\}$

$$
\begin{equation*}
=\mu_{\mathrm{A}}(\mathrm{x}) \text {, by hypothesis. } \tag{2}
\end{equation*}
$$

That is, $\mu_{A}(x y) \geq \mu_{A}(x)$
Now, $\mu_{\mathrm{A}}(\mathrm{x})=\mu_{\mathrm{A}}\left(\mathrm{xyy}^{-1}\right)$

$$
\begin{align*}
& \geq \min \left\{\mu_{A}(x y), \mu_{A}\left(y^{-1}\right)\right\} \\
& =\min \left\{\mu_{A}(x y), \mu_{A}(y)\right\} \\
& =\mu_{A}(x y) \tag{3}
\end{align*}
$$

Therefore, $\mu_{A}(x) \geq \mu_{A}(x y)$
From (2) and (3), we get $\mu_{A}(x)=\mu_{A}(x y)$ and by using (1),

$$
\mu_{\mathrm{A}}(\mathrm{x})=\mu_{\mathrm{A}}(\mathrm{xy})=\mu_{\mathrm{A}}(\mathrm{yx}), \forall \mathrm{x}, \mathrm{y} \in \mathrm{G} . \text { Hence (i). }
$$

(ii)Let A be an IMFNSG of a group G.

$$
\begin{equation*}
\Leftrightarrow \mu_{A}(x y)=\mu_{A}(y x) \text { and } \nu_{A}(x y)=v_{A}(y x), \forall x, y \in G . \tag{1}
\end{equation*}
$$

Suppose that $V_{A}(x)>V_{A}(y)$ for some $x, y \in G$.
Then $\quad V_{A}(x y) \leq \max \left\{V_{A}(x), V_{A}(y)\right\}$

$$
\begin{equation*}
=V_{\mathrm{A}}(\mathrm{x}) \text {, by hypothesis. } \tag{4}
\end{equation*}
$$

That is, $V_{A}(x y) \leq V_{A}(x)$
Now, $\quad V_{A}(x)=V_{A}\left(x^{-1}\right)$

$$
\begin{align*}
& \leq \max \left\{V_{A}(x y), V_{A}\left(y^{-1}\right)\right\} \\
& =\max \left\{\boldsymbol{V}_{A}(x y), \nu_{A}(y)\right\} \\
& =V_{A}(x y) \tag{5}
\end{align*}
$$

Therefore, $V_{\mathrm{A}}(\mathrm{x}) \leq V_{\mathrm{A}}(\mathrm{xy})$
From (4) and (5), we get $V_{A}(x)=V_{A}(x y)$ and by using (1),
$V_{\mathrm{A}}(\mathrm{x})=V_{\mathrm{A}}(\mathrm{xy})=V_{\mathrm{A}}(\mathrm{yx}), \forall \mathrm{x}, \mathrm{y} \in \mathrm{G}$. Hence(ii).

3.6 Remark

The above Theorem 3.5 fails, if we replace in the hypothesis:
(i) $\quad \mu_{A}(x)<\mu_{A}(y)$ by $\mu_{A}(x) \leq \mu_{A}(y), \forall x, y \in G$.
(ii)

$$
V_{\mathrm{A}}(\mathrm{x})>\nu_{\mathrm{A}}(\mathrm{y}) \text { by } V_{\mathrm{A}}(\mathrm{x}) \geq \boldsymbol{V}_{\mathrm{A}}(\mathrm{y}), \forall \mathrm{x}, \mathrm{y} \in \mathrm{G}
$$

3.7 Definition

Let A be an IMFS of a group G and let $\langle A\rangle=\bigcap_{i}\left\{B_{i} / A \subseteq B_{i}\right.$ and B_{i} is an IMFNSG of $\left.G\right\}$. Then $\langle A\rangle$ is called the IMFNSG of G generated by A. Here, note that $A \subseteq B \Leftrightarrow \mu_{A}(x) \leq \mu_{B}(x)$ and $V_{\mathrm{A}}(\mathrm{x}) \geq \boldsymbol{V}_{\mathrm{B}}(\mathrm{x}), \forall \mathrm{x} \in \mathrm{G}$.

3.8 Theorem

Let A be an IMFS of a group G and let $\langle A\rangle=\underset{i}{\cap}\left\{B_{i} / A \subseteq B_{i}\right.$ and B_{i} is an IMFNSG of $\left.G\right\}$.
Then $\langle\mathrm{A}\rangle$ is an IMFNSG of G.

Proof: By Theorem 2.20, $\langle\mathrm{A}\rangle$ is an IMFSG of G.
Let $A \subseteq B_{i}$ and B_{i} be an IMFNSG of $G, \forall i$. Also given $\langle A\rangle=\cap_{i} B_{i}$.

Then $\forall \mathrm{x}, \mathrm{y} \in \mathrm{G}$,

$$
\begin{aligned}
& \Rightarrow \mu_{\langle\mathrm{A}\rangle}(\mathrm{xy})=\mu_{\cap_{\mathrm{i}}}(\mathrm{xy}) \quad \text { and } \quad V_{\langle\mathrm{A}\rangle}(\mathrm{xy})=V_{\cap_{\mathrm{B}_{\mathrm{i}}}}(\mathrm{xy}) \\
& \Rightarrow \mu_{\langle\mathrm{A}\rangle}(\mathrm{xy})=\min _{\mathrm{i}} \mu_{\mathrm{B}_{\mathrm{i}}}(\mathrm{xy}) \text { and } \quad V_{\langle\mathrm{A}\rangle}(\mathrm{xy})=\max _{\mathrm{i}}{V_{\mathrm{Bi}_{\mathrm{i}}}(\mathrm{xy})} \\
& \Rightarrow \mu_{\langle\mathrm{A}\rangle}(\mathrm{xy})=\min _{\mathrm{i}} \mu_{\mathrm{B}_{\mathrm{i}}}(\mathrm{yx}) \text { and } \quad V_{\langle\mathrm{A}\rangle}(\mathrm{xy})=\max _{\mathrm{i}} V_{\mathrm{B}_{\mathrm{i}}}(\mathrm{yx}) \\
& \Rightarrow \mu_{\langle A\rangle}(x y)=\mu_{\cap_{i}}(y x) \text { and } V_{\langle A\rangle}(x y)=V_{\cap_{i}}(y x) \\
& \Rightarrow \mu_{\langle\mathrm{A}\rangle}(\mathrm{xy})=\mu_{\langle\mathrm{A}\rangle}(\mathrm{yx}) \text { and } V_{\langle\mathrm{A}\rangle}(\mathrm{xy})=V_{\langle\mathrm{A}\rangle}(\mathrm{yx})
\end{aligned}
$$

Therefore, $\langle\mathrm{A}\rangle$ is an IMFNSG of G.

3.9 Remarks

1. $\langle\mathrm{A}\rangle$ is the IMFNSG of group G generated by A.
2. $\langle\mathrm{A}\rangle$ is the smallest IMFNSG of group G which contains A.

4. Cartesian Product of intuitionistic multi-fuzzy normal subgroups

In this section, we introduce the concept of Cartesian product of intuitionistic multi-fuzzy normal subgroups and discuss some of its related properties.

4.1 Theorem

Let A and B be any two IMFNSG's of groups G_{1} and G_{2} respectively. Then their Cartesian product $\mathrm{A} \times \mathrm{B}$ is also an IMFNSG of $\mathrm{G}_{1} \times \mathrm{G}_{2}$.

Proof: By Theorem 2.19, the Cartesian product $A \times B$ is an IMFSG of $G_{1} \times G_{2}$.
Claim: $\mathrm{A} \times \mathrm{B}$ is an IMFNSG of $\mathrm{G}_{1} \times \mathrm{G}_{2}$.
Let $(p, q),(r, s) \in \mathrm{G}_{1} \times \mathrm{G}_{2}$. Then

$$
\begin{aligned}
\mu_{A \times B}((\mathrm{p}, \mathrm{q})(\mathrm{r}, \mathrm{~s})) & =\mu_{\mathrm{A} \times \mathrm{B}}(\mathrm{pr}, \mathrm{qs}) \\
& =\min \left\{\mu_{A}(\mathrm{pr}), \mu_{\mathrm{B}}(\mathrm{qs})\right\} \\
& =\min \left\{\mu_{A}(\mathrm{rp}), \mu_{\mathrm{B}}(\mathrm{sq})\right\}, \text { since A \& B are IMFNSG's of G } \mathrm{G}_{1} \text { and } G_{2} . \\
& =\mu_{A \times B}(\mathrm{rp}, \mathrm{sq}) \\
& =\mu_{A \times B}((\mathrm{r}, \mathrm{~s})(\mathrm{p}, \mathrm{q}))
\end{aligned}
$$

That is, $\mu_{A \times B}((p, q)(r, s))=\mu_{A \times B}((r, s)(p, q))$.

$$
\begin{aligned}
\nu_{\mathrm{A} \times \mathrm{B}}((\mathrm{p}, \mathrm{q})(\mathrm{r}, \mathrm{~s})) & =\boldsymbol{V}_{\mathrm{A} \times \mathrm{B}}(\mathrm{pr}, \mathrm{qs}) \\
& =\max \left\{\boldsymbol{\nu}_{\mathrm{A}}(\mathrm{pr}), \boldsymbol{\nu}_{\mathrm{B}}(\mathrm{qs})\right\} \\
& =\max \left\{\nu_{\mathrm{A}}(\mathrm{rp}), \nu_{\mathrm{B}}(\mathrm{sq})\right\}, \text { since A \& B are IMFNSG's of } \mathrm{G}_{1} \text { and } \mathrm{G}_{2} . \\
& ={V_{\mathrm{A} \times \mathrm{B}}}(\mathrm{rp}, \mathrm{sq}) \\
& =\nu_{\mathrm{A} \times \mathrm{B}}((\mathrm{r}, \mathrm{~s})(\mathrm{p}, \mathrm{q}))
\end{aligned}
$$

That is, $\boldsymbol{V}_{\mathrm{A} \times \mathrm{B}}((\mathrm{p}, \mathrm{q})(\mathrm{r}, \mathrm{s}))=\mathrm{V}_{\mathrm{A} \times \mathrm{B}}((\mathrm{r}, \mathrm{s})(\mathrm{p}, \mathrm{q}))$.
Hence, $\mu_{A \times B}((p, q)(r, s))=\mu_{A \times B}((r, s)(p, q))$ and $V_{A \times B}((p, q)(r, s))=\nu_{A \times B}((r, s)(p, q))$
Hence, $A \times B$ is an IMFNSG of $G_{1} \times G_{2}$.

4.2 Remark

Let A and B be IMFS's of G_{1} and G_{2} respectively. If $A \times B$ is an IMFNSG of $G_{1} \times G_{2}$, then it is not necessarily that both A and B are IMFNSG's of G_{1} and G_{2} respectively.

5. Properties of an intuitionistic multi-fuzzy normal subgroup of a group under homomorphism and anti-homomorphism

In this section, we discuss the properties of an intuitionistic multi-fuzzy normal subgroup of a group under homomorphism and anti-homomorphism.

5.1 Theorem

Let $\mathrm{f}: \mathrm{G}_{1} \rightarrow \mathrm{G}_{2}$ be an onto, homomorphism of groups. If $\mathrm{A}=\left\{\left\langle\mathrm{x}, \mu_{\mathrm{A}}(\mathrm{x}), v_{\mathrm{A}}(\mathrm{x})\right\rangle\right.$: $\left.x \in G_{1}\right\}$ is an IMFNSG of G_{1}, then $f(A)=\left\{<y, \mu_{f(A)}(y), v_{f(A)}(y)>/ y \in G_{2}\right.$, wherey $\left.=f(x)\right\}$ is also an IMFNSG of G_{2} if μ_{A} has sup property; ν_{A} has inf property and μ_{A}, ν_{A} are finvariants.

Proof: By Theorem 2.15, $f(A)$ is an IMFSG of G_{2}.
Let A be an IMFNSG of group G_{1}.
Let $\mathrm{y}_{1}, \mathrm{y}_{2} \in \mathrm{G}_{2}$.
Since f is onto, there exist elements $\mathrm{x}_{1}, \mathrm{x}_{2} \in \mathrm{G}_{1}$ such that $\mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{y}_{1}$ and $\mathrm{f}\left(\mathrm{x}_{2}\right)=\mathrm{y}_{2}$.
Since A is an IMFNSG of $G_{1}, \mu_{A}\left(x_{1} x_{2}\right)=\mu_{A}\left(x_{2} x_{1}\right)$ and $V_{A}\left(x_{1} x_{2}\right)=V_{A}\left(x_{2} x_{1}\right)$.
Also, $\mathrm{y}_{2} \mathrm{y}_{1}=\mathrm{f}\left(\mathrm{x}_{2}\right) \mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}\left(\mathrm{x}_{2} \mathrm{x}_{1}\right)$, since f is a homomorphism.
Now, $\mu_{f(A)}\left(\mathrm{y}_{1} \mathrm{y}_{2}\right)=\mu_{\mathrm{f}(\mathrm{A})}\left(\mathrm{f}\left(\mathrm{x}_{1}\right) \mathrm{f}\left(\mathrm{x}_{2}\right)\right)$

$$
\begin{aligned}
& =\mu_{f(A)}\left(f\left(x_{1} x_{2}\right)\right), \text { since } f \text { is a homomorphism. } \\
& =\mu_{A}\left(x_{1} x_{2}\right), \\
& \geq \min \left\{\mu_{A}\left(x_{1}\right), \mu_{A}\left(x_{2}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\min \left\{\mu_{f(A)} f\left(x_{1}\right), \mu_{f(A)} f\left(x_{2}\right)\right\} \\
& =\mu_{f(A)} f\left(x_{2} x_{1}\right) \\
& =\mu_{f(A)}\left(y_{2} y_{1}\right), \text { since } \mathrm{f} \text { is a homomorphism. }
\end{aligned}
$$

That is, $\mu_{\mathrm{f}(\mathrm{A})}\left(\mathrm{y}_{1} \mathrm{y}_{2}\right)=\mu_{\mathrm{f}(\mathrm{A})}\left(\mathrm{y}_{2} \mathrm{y}_{1}\right), \forall \mathrm{y}_{1}, \mathrm{y}_{2} \in \mathrm{G}_{2}$.
Also, $V_{f(A)}\left(y_{1} y_{2}\right)=V_{f(A)}\left(f\left(x_{1}\right) f\left(x_{2}\right)\right)$
$=V_{f(A)}\left(f\left(x_{1} x_{2}\right)\right)$, since f is a homomorphism.
$=V_{\mathrm{A}}\left(\mathrm{x}_{1} \mathrm{X}_{2}\right)$
$\leq \max \left\{\boldsymbol{V}_{\mathrm{A}}\left(\mathrm{x}_{1}\right), \boldsymbol{V}_{\mathrm{A}}\left(\mathrm{x}_{2}\right)\right\}$
$=\max \left\{\boldsymbol{V}_{\mathrm{f}(\mathrm{A})} \mathrm{f}\left(\mathrm{x}_{1}\right), \boldsymbol{V}_{\mathrm{f}(\mathrm{A})} \mathrm{f}\left(\mathrm{x}_{2}\right)\right\}$
$=V_{f(A)} f\left(\mathrm{X}_{2} \mathrm{X}_{1}\right)$
$=V_{f(A)}\left(y_{2} y_{1}\right)$, since f is a homomorphism.
That is, $V_{f(A)}\left(y_{1} y_{2}\right)=V_{f(A)}\left(y_{2} y_{1}\right), \forall y_{1}, y_{2} \in G_{2}$.
Hence, $f(A)$ is an IMFNSG of G_{2}.

5.2 Theorem

Let G_{1} and G_{2} be any two groups. Let $\mathrm{f}: \mathrm{G}_{1} \rightarrow \mathrm{G}_{2}$ be a homomorphism of groups. If $\mathrm{B}=$ $\left\{\left\langle y, \mu_{B}(y), v_{B}(y)\right\rangle: y \in G_{2}\right\}$ is an IMFNSG of G_{2}, then $f^{-1}(B)=\left\{\left\langle x, \mu_{f^{-1}(B)}(x), v_{f^{-1}(B)}(x)\right\rangle\right.$: $\left.x \in G_{1}\right\}$ is also an IMFNSG of G_{1}.

Proof: By Theorem 2.16, $\mathrm{f}^{-1}(\mathrm{~B})$ is an IMFSG of G_{1}.
Let B be an IMFNSG of G_{2}.
For any $\mathrm{x}, \mathrm{y} \in \mathrm{G}_{1}$,

$$
\begin{aligned}
\mu_{f^{-1}(\mathrm{~B})}(\mathrm{xy}) & =\mu_{\mathrm{B}}(\mathrm{f}(\mathrm{xy})) \\
& =\mu_{\mathrm{B}}(\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y})), \text { since } \mathrm{f} \text { is a homomorphism. }
\end{aligned}
$$

$$
\begin{aligned}
& =\mu_{\mathrm{B}}(\mathrm{f}(\mathrm{y}) \mathrm{f}(\mathrm{x})) \text {, since } \mathrm{B} \text { is an IMFNSG of } \mathrm{G}_{2} . \\
& =\mu_{\mathrm{B}}(\mathrm{f}(\mathrm{yx})) \text {, since } \mathrm{f} \text { is a homomorphism. }
\end{aligned}
$$

Therefore, $\mu_{\mathrm{F}^{1^{1}(B)}}(\mathrm{xy})=\mu_{\mathrm{f}^{1}(\mathrm{~B})}(\mathrm{yx}), \forall \mathrm{x}, \mathrm{y} \in \mathrm{G}_{\mathrm{I}^{2}}$.
For any $\mathrm{x}, \mathrm{y} \in \mathrm{G}_{1}$,

$$
\begin{aligned}
V_{\mathrm{f}^{-1}(\mathrm{~B})}(\mathrm{xy}) & =\nu_{\mathrm{B}}(\mathrm{f}(\mathrm{xy})) \\
& =\nu_{\mathrm{B}}(\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y})) \text {, since } \mathrm{f} \text { is a homomorphism. } \\
& =\nu_{\mathrm{B}}(\mathrm{f}(\mathrm{y}) \mathrm{f}(\mathrm{x})) \text {, since } \mathrm{B} \text { is an IMFNSG of } \mathrm{G}_{2} . \\
& =\nu_{\mathrm{B}}(\mathrm{f}(\mathrm{yx})) \text {, since } \mathrm{f} \text { is a homomorphism. }
\end{aligned}
$$

Therefore, $V_{\mathrm{f}^{-1}(\mathrm{~B})}(\mathrm{xy})=V_{\mathrm{f}^{-1}(\mathrm{~B})}(\mathrm{yx}), \forall \mathrm{x}, \mathrm{y} \in \mathrm{G}_{1}$.
Hence, $\mathrm{f}^{-1}(\mathrm{~B})$ is an IMFNSG of G_{1}.

5.3 Theorem

Let G_{1} and G_{2} be any two groups. Let $\mathrm{f}: \mathrm{G}_{1} \rightarrow \mathrm{G}_{2}$ be an onto, anti-homomorphism. If $\mathrm{A}=$ $\left\{\left\langle x, \mu_{A}(x), v_{A}(x)\right\rangle: x \in G\right\}$ is an IMFNSG of G_{1}, then $f(A)=\left\{\left\langle x, \mu_{f(A)}(x), \nu_{f(A)}(x)\right\rangle: x \in G\right.$ \} is also an IMFNSG of G_{2} if μ_{A} has sup property; v_{A} has inf property and μ_{A}, v_{A} are finvariants.

Proof: By Theorem 2.17, $f(A)$ is an IMFSG of G_{2}.
Let A be an IMFNSG of G_{1}.
For every $x, y \in G_{1}$, there exist $f(x), f(y) \in G_{2}$.
Since A is an IMFNSG of $G_{1}, \mu_{A}(x y)=\mu_{A}(y x)$ and $V_{A}(x y)=V_{A}(y x)$.
Now, $\quad \mu_{f(A)}(f(x) f(y))=\mu_{f(A)}(f(y x))$, since f is an anti-homomorphism.

$$
\begin{aligned}
& =\mu_{A}(y x) \\
& =\mu_{A}(x y)
\end{aligned}
$$

$$
\begin{aligned}
& =\mu_{f(A)}(f(x y)) \\
& =\mu_{f(A)}(f(y) f(x)), \text { since } f \text { is an anti-homomorphism. }
\end{aligned}
$$

Therefore, $\quad \mu_{f(A)}(f(x) f(y))=\mu_{f(A)}(f(y) f(x))$.
And

$$
\begin{aligned}
V_{\mathrm{f}(\mathrm{~A})}(\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y})) & =V_{\mathrm{f}(\mathrm{~A})}(\mathrm{f}(\mathrm{yx})), \text { since } \mathrm{f} \text { is an anti-homomorphism. } \\
& =V_{\mathrm{A}}(\mathrm{yx}) \\
& =V_{\mathrm{A}}(\mathrm{xy}) \\
& =V_{\mathrm{f}(\mathrm{~A})}(\mathrm{f}(\mathrm{xy})) \\
& =V_{\mathrm{f}(\mathrm{~A})}(\mathrm{f}(\mathrm{y}) \mathrm{f}(\mathrm{x})), \text { since } \mathrm{f} \text { is an anti-homomorphism. }
\end{aligned}
$$

Therefore, $\quad V_{f(A)}(\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y}))=\mathrm{V}_{\mathrm{f}(\mathrm{A})}(\mathrm{f}(\mathrm{y}) \mathrm{f}(\mathrm{x}))$.
Hence, $f(A)$ is an IMFNSG of G_{2}.

5.4 Theorem

Let G_{1} and G_{2} be any two groups. Let $\mathrm{f}: \mathrm{G}_{1} \rightarrow \mathrm{G}_{2}$ be an anti-homomorphism.

Proof: By Theorem 2.18, $\mathrm{f}^{-1}(\mathrm{~B})$ is an IMFSG of G_{1}.
Let B be an IMFNSG of G_{2}.
For any $\mathrm{x}, \mathrm{y} \in \mathrm{G}_{1}$,

$$
\begin{aligned}
\mu_{\mathrm{f}^{-1}(\mathrm{~B})}(\mathrm{xy}) & =\mu_{\mathrm{B}}(\mathrm{f}(\mathrm{xy})) \\
& =\mu_{\mathrm{B}}(\mathrm{f}(\mathrm{y}) \mathrm{f}(\mathrm{x})) \text {), since } \mathrm{f} \text { is an anti-homomorphism. } \\
& =\mu_{\mathrm{B}}(\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y})) \text {, since } \mathrm{B} \text { is an IMFNSG of } \mathrm{G}_{2} . \\
& =\mu_{\mathrm{B}}(\mathrm{f}(\mathrm{yx})) \text {, since } \mathrm{f} \text { is an anti-homomorphism. }
\end{aligned}
$$

$$
=\mu_{f^{\prime}(\mathrm{B})}(\mathrm{yx})
$$

Therefore, $\mu_{\mathrm{f}^{-1}(\mathrm{~B})}(\mathrm{xy})=\mu_{\mathrm{f}^{-1}(\mathrm{~B})}(\mathrm{yx}), \forall \mathrm{x}, \mathrm{y} \in \mathrm{G}_{1}$ and
For any $\mathrm{x}, \mathrm{y} \in \mathrm{G}_{1}$,

$$
\begin{aligned}
V_{\mathrm{f}^{-1}(\mathrm{~B})}(\mathrm{xy}) & =V_{\mathrm{B}}(\mathrm{f}(\mathrm{xy})) \\
& =V_{\mathrm{B}}(\mathrm{f}(\mathrm{y}) \mathrm{f}(\mathrm{x})), \text { since } \mathrm{f} \text { is an anti-homomorphism. } \\
& =V_{\mathrm{B}}(\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y})), \text { since } \mathrm{B} \text { is an IMFNSG of } \mathrm{G}_{2} . \\
& =V_{\mathrm{B}}(\mathrm{f}(\mathrm{yx})), \text { since } \mathrm{f} \text { is an anti-homomorphism. } \\
& =V_{\mathrm{f}^{-1}(\mathrm{~B})}(\mathrm{yx})
\end{aligned}
$$

Therefore, $V_{\mathrm{f}^{-1}(\mathrm{~B})}(\mathrm{xy})=\mathcal{V}_{\mathrm{f}^{-1}(\mathrm{~B})}(\mathrm{yx}), \forall \mathrm{x}, \mathrm{y} \in \mathrm{G}_{1}$.
Hence, $\mathrm{f}^{-1}(\mathrm{~B})$ is an IMFNSG of G_{1}.

5.5 Theorem

Let G_{i} (for $\mathrm{i}=1,2,3,4$) be groups. Let $\mathrm{f}: \mathrm{G}_{1} \times \mathrm{G}_{2} \rightarrow \mathrm{G}_{3} \times \mathrm{G}_{4}$ be an onto homomorphism (or anti-homomorphism) of groups. Let A and B be any two IMFNSG's of G_{1} and G_{2} respectively. Let $\mathrm{f}_{1}: \mathrm{G}_{1} \rightarrow \mathrm{G}_{3}$ and $\mathrm{f}_{2}: \mathrm{G}_{2} \rightarrow \mathrm{G}_{4}$ be onto homomorphism (or anti-homomorphism) of groups. If $A \times B$ is an IMFNSG of $G_{1} \times G_{2}$, then $f(A \times B)$ is also an IMFNSG of $G_{3} \times G_{4}$ if $A \times B$ have sup property and also $\mathrm{A} \times \mathrm{B}$ is f -invariant.

Proof: It is clear.

5.6 Theorem

Let G_{i} (for $\mathrm{i}=1,2,3,4$) be groups. Let $\mathrm{f}: \mathrm{G}_{1} \times \mathrm{G}_{2} \rightarrow \mathrm{G}_{3} \times \mathrm{G}_{4}$ be a homomorphism (or antihomomorphism) of groups. Let C and D be any two IMFNSG's of G_{3} and G_{4} respectively. Let $\mathrm{f}_{1}: \mathrm{G}_{1} \rightarrow \mathrm{G}_{3}$ and $\mathrm{f}_{2}: \mathrm{G}_{2} \rightarrow \mathrm{G}_{4}$ be a homomorphism (or anti-homomorphism) of groups. If $\mathrm{C} \times \mathrm{D}$ is an IMFNSG of $G_{3} \times G_{4}$, then $f^{-1}(C \times D)$ is also an IMFNSG of $G_{1} \times G_{2}$.

Proof: It is clear.

5.7 Theorem

Let G_{i} (for $\mathrm{i}=1,2,3,4$) be groups. Let A and B be any two IMFNSG's of G_{1} and G_{2} respectively. Let $\mathrm{f}_{1}: \mathrm{G}_{1} \rightarrow \mathrm{G}_{3}$ and $\mathrm{f}_{2}: \mathrm{G}_{2} \rightarrow \mathrm{G}_{4}$ be onto homomorphism (or anti-homomorphism) of groups. Let $\mathrm{f}: \mathrm{G}_{1} \times \mathrm{G}_{2} \rightarrow \mathrm{G}_{3} \times \mathrm{G}_{4}$ be an onto homomorphism (or anti-homomorphism) of groups such that $f((u, v))=\left(f_{1}(u), f_{2}(v)\right)$. If $A \times B$ is an IMFNSG of $G_{1} \times G_{2}$, then $f(A \times B)=f_{1}(A) \times f_{2}(B)$ if $\mathrm{A} \times \mathrm{B}$ have sup property and also $\mathrm{A} \times \mathrm{B}$ is f -invariant.

Proof: Let $\mathrm{A} \times \mathrm{B}$ be an IMFNSG of $\mathrm{G}_{1} \times \mathrm{G}_{2}$.
Let $(u, v) \in G_{1} \times G_{2}$. Then $u \in G_{1}$ and $v \in G_{2}$. It implies that $f_{1}(u) \in G_{3}$ and $f_{2}(v) \in G_{4}$.
Therefore, $(u, v) \in G_{1} \times G_{2} \Rightarrow f((u, v))=\left(f_{1}(u), f_{2}(v)\right) \in G_{3} \times G_{4}$. Then

$$
\begin{aligned}
\mu_{f(A \times B)}\left(f_{1}(u), f_{2}(v)\right) & =\mu_{f(A \times B)}(f(u, v)) \\
& =\mu_{A \times B}(u, v) \\
& =\min \left\{\mu_{A}(u), \mu_{B}(v)\right\} \\
& =\min \left\{\mu_{f_{1}(A)}\left(f_{1}(u)\right), \mu_{f_{2}(B)}\left(f_{2}(v)\right)\right\} \\
& =\mu_{f_{1}(A) \times f_{2}(B)}\left(f_{1}(u), f_{2}(v)\right)
\end{aligned}
$$

Therefore, $\mu_{f(A \times B)}\left(f_{1}(u), f_{2}(v)\right)=\mu_{f_{1}(A) \times f_{2}(B)}\left(f_{1}(u), f_{2}(v)\right)$, for all $\left(f_{1}(u), f_{2}(v)\right) \in G_{3} \times G_{4}$.

$$
\begin{aligned}
V_{f(\mathrm{~A} \times \mathrm{B})}\left(\mathrm{f}_{1}(\mathrm{u}), \mathrm{f}_{2}(\mathrm{v})\right) & =V_{\mathrm{f}(\mathrm{~A} \times \mathrm{B})}(\mathrm{f}(\mathrm{u}, \mathrm{v})) \\
& =V_{\mathrm{A} \times \mathrm{B}}(\mathrm{u}, \mathrm{v}) \\
& =\max \left\{\boldsymbol{V}_{\mathrm{A}}(\mathrm{u}), \boldsymbol{V}_{\mathrm{B}}(\mathrm{v})\right\} \\
& =\max \left\{V_{\mathrm{f}_{1}(\mathrm{~A})}\left(\mathrm{f}_{1}(\mathrm{u})\right), V_{\mathrm{f}_{2}(\mathrm{~B})}\left(\mathrm{f}_{2}(\mathrm{v})\right)\right\} \\
& =V_{\mathrm{f}_{1}(\mathrm{~A}) \times \mathrm{f}_{2}(\mathrm{~B})}\left(\mathrm{f}_{1}(\mathrm{u}), \mathrm{f}_{2}(\mathrm{v})\right)
\end{aligned}
$$

Therefore, $V_{f(A \times B)}\left(f_{1}(u), f_{2}(v)\right)=v_{f_{1}(A) \times f_{2}(B)}\left(f_{1}(u), f_{2}(v)\right)$, for all $\left(f_{1}(u), f_{2}(v)\right) \in G_{3} \times G_{4}$.
Hence, $f(A \times B)=f_{1}(A) \times f_{2}(B)$.

5.8 Theorem

Let $\mathrm{G}_{\mathrm{i}}\left(\right.$ for $\mathrm{i}=1,2,3,4$) be groups. Let C and D be any two IMFNSG's of G_{3} and G_{4} respectively. Let $\mathrm{f}_{1}: \mathrm{G}_{1} \rightarrow \mathrm{G}_{3}$ and $\mathrm{f}_{2}: \mathrm{G}_{2} \rightarrow \mathrm{G}_{4}$ be homomorphism (or anti-homomorphism) of groups. Let f: $G_{1} \times G_{2} \rightarrow G_{3} \times G_{4}$ be a homomorphism (or anti-homomorphism) such that $f($ $(u, v))=\left(f_{1}(u), f_{2}(v)\right)$. If $C \times D$ is an IMFNSG of $G_{3} \times G_{4}$, then $f^{-1}(C \times D)=f_{1}{ }^{-1}(C) \times f_{2}{ }^{-1}(D)$.

Proof: Let $\mathrm{C} \times \mathrm{D}$ be an IMFNSG of $\mathrm{G}_{3} \times \mathrm{G}_{4}$.
Let $(u, v) \in G_{1} \times G_{2}$. Then $u \in G_{1}$ and $v \in G_{2}$. It implies that $f_{1}(u) \in G_{3}$ and $f_{2}(v) \in G_{4}$.
Therefore, $(u, v) \in \mathrm{G}_{1} \times \mathrm{G}_{2}$.
$\Rightarrow \mathrm{f}((\mathrm{u}, \mathrm{v}))=\left(\mathrm{f}_{1}(\mathrm{u}), \mathrm{f}_{2}(\mathrm{v})\right) \in \mathrm{G}_{3} \times \mathrm{G}_{4}$, since f is homomorphism.
Then $\left.\mu_{f^{-1}(\mathrm{C} \times \mathrm{D})}(\mathrm{u}, \mathrm{v}) \quad=\mu_{\mathrm{C} \times \mathrm{D}} \mathrm{f}(\mathrm{u}, \mathrm{v})\right)$

$$
\begin{aligned}
& =\mu_{\mathrm{C} \times \mathrm{D}}\left(\mathrm{f}_{1}(\mathrm{u}), \mathrm{f}_{2}(\mathrm{v})\right) \\
& =\min \left\{\mu_{\mathrm{C}}\left(\mathrm{f}_{1}(\mathrm{u})\right), \mu_{\mathrm{D}}\left(\mathrm{f}_{2}(\mathrm{v})\right)\right\} \\
& =\min \left\{\mu_{\mathrm{f}_{1}^{-1}(\mathrm{C})}(\mathrm{u}), \mu_{\mathrm{f}_{2}^{-1}(\mathrm{D})}(\mathrm{v})\right\} \\
& =\mu_{\mathrm{f}_{1}^{-1}(\mathrm{C}) \times \mathrm{f}_{2}^{-1}(\mathrm{D})}(\mathrm{u}, \mathrm{v})
\end{aligned}
$$

Therefore, $\mu_{\mathrm{f}^{-1}(\mathrm{C} \times \mathrm{D})}(\mathrm{u}, \mathrm{v})=\mu_{\mathrm{f}_{1}{ }^{-1}(\mathrm{C}) \times \mathrm{f}_{2}{ }^{-1}(\mathrm{D})}(\mathrm{u}, \mathrm{v})$, for all $(\mathrm{u}, \mathrm{v}) \in \mathrm{G}_{1} \times \mathrm{G}_{2}$.
And

$$
\begin{aligned}
\boldsymbol{V}_{\mathrm{f}^{-1}(\mathrm{C} \times \mathrm{D})}(\mathrm{u}, \mathrm{v}) & =\boldsymbol{V}_{\mathrm{C} \times \mathrm{D}} \mathrm{f}((\mathrm{u}, \mathrm{v})) \\
& =\boldsymbol{v}_{\mathrm{C} \times \mathrm{D}}\left(\mathrm{f}_{1}(\mathrm{u}), \mathrm{f}_{2}(\mathrm{v})\right) \\
& =\max \left\{\boldsymbol{v}_{\mathrm{C}}\left(\mathrm{f}_{1}(\mathrm{u})\right), \nu_{\mathrm{D}}\left(\mathrm{f}_{2}(\mathrm{v})\right)\right\} \\
& =\max \left\{\boldsymbol{v}_{\mathrm{f}_{1}{ }^{-1}(\mathrm{C})}(\mathrm{u}),{v_{\mathrm{f}_{2}}{ }^{-1}(\mathrm{D})}(\mathrm{v})\right\} \\
& =\boldsymbol{v}_{\mathrm{f}_{1}-1(\mathrm{C}) \times \mathrm{f}_{2}^{-1}(\mathrm{D})}(\mathrm{u}, \mathrm{v})
\end{aligned}
$$

Therefore, $V_{\mathrm{f}^{-1}(\mathrm{C} \times \mathrm{D})}(\mathrm{u}, \mathrm{v})={V_{\mathrm{f}_{1}}(\mathrm{C}) \times \mathrm{f}_{2}^{-1}(\mathrm{D})}(\mathrm{u}, \mathrm{v})$, for all $(\mathrm{u}, \mathrm{v}) \in \mathrm{G}_{1} \times \mathrm{G}_{2}$.
Hence, $\mathrm{f}^{-1}(\mathrm{C} \times \mathrm{D})=\mathrm{f}_{1}^{-1}(\mathrm{C}) \times \mathrm{f}_{2}^{-1}(\mathrm{D})$.

6. CONCLUSION

The intuitionistic multi-fuzzy sets are very important role for the development of the theory of intuitionistic multi-fuzzy subgroups. In this paper an attempt has been made to study some new algebraic structures of intuitionistic multi-fuzzy normal subgroups and their properties were discussed.

REFERENCES

[1] AtanassovK.T., Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20(1986), No.1,87-96.
[2] Basnet D.K. and Sarma N.K., A note on Intuitionistic Fuzzy Equivalence Relation, International Mathematical Forum, 5, 2010, No.67, 3301-3307.
[3] Biswas R., Vague Groups, International Journal of Computational Cognition, Vol.4, No.2, June 2006.
[4] Das P.S., Fuzzy groups and level subgroups, Journal of Mathematical Analysis and Applications, 84 (1981), 264-269.
[5] KulHur and Su Youn Jang, The lattice of Intuitionistic fuzzy congruences, International Mathematical Forum, 1, 2006, No.5, 211-236.
[6] Mukharjee N.P. and Bhattacharya P., Fuzzy normal subgroups and fuzzy cosets, Information Sciences, 34 (1984), 225-239.
[7] Muthuraj R. and Balamurugan S., Multi-fuzzy group and its Level subgroups, Gen. Math. Notes, Vol. 17, No.1, July, 2013, pp. 74-81.
[8] Muthuraj.R and Balamurugan.S., "A Study on Intuitionistic Multi-Fuzzy Subgroups", Intl. Jour. of Applications of Fuzzy Sets and Artificial Intelligence (IJAFSAI), Vol. 4 (July 2014), pp.153-172.
[9] Rosenfeld A., Fuzzy groups, Journal of Mathematical Analysis and Applications, 35 (1971), 512-517.
[10] Sabu S. and Ramakrishnan T.V., Multi-fuzzy sets, International Mathematical Forum,50 (2010), 2471-2476.
[11] Sabu S. and Ramakrishnan T.V., Multi-fuzzy subgroups, Int. J. Contemp. Math.

International Journal of Engineering, Science and Mathematics
Vol. 10 Issue 09, September 2021,
ISSN: 2320-0294 Impact Factor: 6.765
Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed \& Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

Sciences, Vol.6, 8 (2011), 365-372.
[12] Sharma P.K., Intuitionistic Fuzzy Groups, ifrsa International Journal of Data warehousing and Mining, vol.1, 2011, iss.1, 86-94.
[13] Shinoj T.K. and Sunil Jacob John, Intuitionistic Fuzzy Multisets, Intl. Journal of Engineering Science and Innovative Technology, Vol.2, 2013, Issue 6, 1-24.
[14] Zadeh L.A., Fuzzy Sets, Information and Control 8, (1965), 338-353.

