INVOLUTIONS IN BANACH ALGEBRA

Dr. G. B. Lamb
Associate Professor
Baliram Patil College, Kinwat
Dist.Nanded (M.S.)

ABSTRACT : In this paper, we define some definition related to involution, examples, Gelfand Nahnark Theorem has important role.
1.INTRODUCTION : Involution has important role in Banach algebra. In this paper we discuss self adjoint, hermitian, Banach algebra corollary, Gelfand Nahnark Thoeorem, isometry and isomorphism studied.
2.Definition : A map $x \rightarrow x^{*}$ of a complex algebra A into A is called an invoution of A if it has the following properties for all $x, y \in A$ and $\lambda \in C$.
(1) $(x+y)^{*} \quad=\quad x^{*}+y^{*}$
(2) $(\lambda x)^{*}=\bar{\lambda} x^{*}$
(3) $(x y)^{*}=y^{*} x^{*}$
(4) $x^{* *}=x$
2.1.Definition : If $x \in A$ and $x^{*}=x$, then x is called hermitian or self adjoint.

Example : $f \rightarrow \bar{f}$ is an involution on $\mathrm{C}(\mathrm{X})$
2.1.Theorem :If A is a Banach algebra with an involution, and if $x \in A$, then
a) $x+x^{*}, i\left(x-x^{*}\right)$ and $x x^{*}$ are hermitian.
b) x has a unique representation $\mathrm{x}=\mathrm{u}+\mathrm{iv}$ where $u, v \in A$ and u and v are hermitian.
c) The unit element e is hermitian
d) x is invertible in A if and only if x^{*} is invertible in which case $\left(x^{*}\right)^{-1}=\left(x^{-1}\right)^{*}$ and
e) $\quad \lambda \in \sigma(x)$ iff $\bar{\lambda} \in \sigma\left(x^{*}\right)$

Proof: $\left(x+x^{*}\right)=x^{*}+x^{* *}=x^{*} x=x+x^{*}$. Hence $x+x^{*}$ is hermitian.
$\left[i\left(x-x^{*}\right)\right]^{*}=\bar{i}\left(x-x^{*}\right)^{*}=-i\left[x^{*}-\left(x^{*}\right)^{*}\right]=-i\left(x^{*}-x\right)=i\left(x-x^{*}\right)$
$\left(x x^{*}\right)^{*}=\left(x^{*}\right)^{*} \cdot x^{*}=x \cdot x^{*}$. Hence $i(x-x)^{*}$ and x^{*} and x^{*} are hermitian.
a) Put $u=\frac{x+x^{*}}{2}$ and $v=\frac{i\left(x^{*}-x\right)}{2}$. Then $\mathrm{x}=\mathrm{u}+\mathrm{iv}$. Clearly u, v are hermitian since $x+x^{*}$ is hermitian and also $\frac{i\left(x^{*}-x\right)}{2}$ is hermitian. The uniqueness of the representation is yet to be proved. If $u^{`}+i v^{\prime}=x$ is another representation then put $w=v^{*}-v$. . Then both w and iw are hermitian and $i w=(i w)^{*}=-i w^{*}=-i w$ i.e. $i w+i w=0$ i.e. $2 i w=0$ (ie) $v^{\prime}=v$.. Since $v^{`}=v, u^{`}=u$

Hence the representation is unique.
b) Clearly $e^{*}=e e^{*}$.. But $e e^{*}$ is self adjoint. Hence e^{*} is self adjoint. Hence e is self adjoint.
c) Since x is invertible \exists, x^{-1} s.t. $x x^{-1}=e$

Now $\left(x x^{-1}\right)^{*}=\left(x^{-1}\right) x^{*}=e^{*}=e(\because$ e is self adjoint $)$
$\therefore\left(x^{-1}\right) *$ is the inverce of x^{*}

But $\left(x^{*}\right)^{-1}$ is the inverse of x^{*} and hence $\left(x^{-1}\right)=\left(x^{*}\right)^{-1}$
d) Let $\lambda \in \sigma(x)$. Then $(\lambda e-x)$ is not invertible. Hence $(\lambda e-x) *$ is not invertible (ie) ($\bar{\lambda} e-x^{*}$) is not invertible. Hence $\bar{\lambda} \in \sigma\left(x^{*}\right)$ the converse follows analogously.
3.Definition : If A is a Banach algebra with an involution *, which satisfies the $\left\|x x^{*}\right\|=\|x\|^{2}$ for every $x \in A$ then A is called a B^{*} algebra.
3.1.Theorem : If A is a semi simple commulative Banach algebra, then involution on A is continuous

Proof: Let h be a homomorphism of A

$$
\text { Define } \emptyset(x)=\bar{h}\left(x^{*}\right)
$$

$$
\begin{aligned}
\text { Then } \left.\begin{array}{l}
\emptyset(x+y) \\
= \\
\\
= \\
\\
=\bar{h}[x+y]^{*} \quad=\bar{h}\left(x^{*}+y^{*}\right)+\bar{h}\left(y^{*}\right) \quad=\emptyset(x)+\emptyset(y) \\
\emptyset(\alpha \cdot x)=\bar{h}\left[(\alpha, x)^{*}\right]
\end{array}\right)=\bar{h}\left(\bar{\alpha} x^{*}\right)
\end{aligned}
$$

$$
=\overline{h\left(\bar{\alpha}, x^{*}\right)}=\overline{\bar{\alpha} h\left(x^{*}\right)}
$$

$$
=\alpha \cdot \bar{h}\left(x^{*}\right)
$$

$$
=\alpha \phi(x)
$$

Similarly $\emptyset(x y)=\bar{h}\left((x y)^{*}\right) \quad=\bar{h}\left(y^{*} x^{*}\right)$

$$
\begin{aligned}
& =\overline{h\left(y^{*} x^{*}\right)} \\
= & \frac{\overline{h\left(y^{*}\right) h\left(x^{*}\right)}}{=} \\
= & \bar{h}\left(y^{*}\right) \bar{h}\left(x^{*}\right) \\
= & \emptyset(y) \cdot \emptyset(x)=\emptyset(x) \cdot \emptyset(y)
\end{aligned}
$$

Hence \varnothing is a complex homomorphism on A. Then \emptyset is continuous. For, suppose $x_{n} \rightarrow x$, and $x_{n}{ }^{*} \rightarrow y$ in A

Then $\bar{h}\left(x^{*}\right)=\varnothing(x)=\operatorname{Lim} Ø\left(x_{n}\right)=\operatorname{Lim} \bar{h}\left(x_{n}{ }^{*}\right)=\bar{h}(y)$

This is true for every $h \in \Delta$.

Since A is semisimple $\mathrm{x}^{*}=\mathrm{y}$. Hence $x \rightarrow x^{*}$ is continuous by closed graph theorem.

3.1.Corollary

A is a B^{*} algebra, iff $\|x *\|=\|x\| \forall x \in A$
and $\left\|x x^{*}\right\|=\|x\|\|x\|^{*}$

$$
\begin{align*}
& \text { For, we have }\|x\|^{2}=\left\|x x^{*}\right\| \leq\|x\|\|x *\| \\
& \text { Hence }\|x\| \leq\|x *\| \tag{1}\\
& \text { Similarly }\left\|x^{*}\right\| \leq\left\|x^{* *}\right\|=\|x\| \tag{2}\\
& \text { From (1) and (2) }\|x *\|=\|x\| \\
& \text { Now }\|x x *\|=\|x\|^{2}=\|x\| \cdot\|x\|=\|x\|\|x *\|
\end{align*}
$$

Conversely, we have that if $\|x\|=\|x *\|$ for every $x \in A$ and $\left\|x x^{*}\right\|=\|x\| \cdot\|x *\|$, then $\|x x *\|=\|x\|\|x *\|=\|x\| \cdot\|x\|=\|x\|^{2}$. Hence A is a B*-Algebra

3.2. Theorem: Gelfand-Nahnark Theorem

Suppose A is a commulative B* algebra, with maximal ideal space Δ. The Gelfand transform is then an isometric isomorphism of A onto $C(\Delta)$ which has the additional property that

$$
h\left(x^{*}\right)=\overline{h(x)}(x \in A, h \in \Delta)
$$

or equivalently, that

$$
\left(x^{*}\right)={ }_{x}^{\bar{\wedge}}(x \in A)
$$

In particular, x is hermitian if and only if \hat{x} is a real function.

The above theorem is called Gelfand - Nahnark theorem

Proof:Let $u \in A$ s.t. $u=u^{*}$. Let $h \in \Delta$. We have to prove that $\mathrm{h}(\mathrm{u})$ is real.

Put $\mathrm{z}=\mathrm{u}+\mathrm{ite}$ for real t . If $h(u)=\alpha+i \beta$ where α, β are reals then

$$
\begin{aligned}
& \left.\begin{array}{l}
h(z)=h(u+i t e)= \\
\\
= \\
=\alpha(u)+h(i t e) \\
\\
=\alpha+i \beta+i t=\quad \alpha(e) \\
z z^{*}
\end{array}\right) u^{2}+t^{2} e \text { so that } \\
& \alpha^{2}+(\beta+t)^{2}=|h(z)|^{2} \leq\|z\|^{2}=\left\|z z^{*}\right\| \leq\|u\|^{2}+t^{2} \\
& \text { or } \alpha^{2}+\beta^{2}+2 \beta t \leq\|u\|^{2} \quad \forall t \in \text { Real }
\end{aligned}
$$

But this implies that $\beta=0 .=0$. Hence $\mathrm{h}(\mathrm{u})$ is real.

If $x \in A$, then $x=u+i v$ with $u=u^{*}, v=v^{*}$

Hence $x^{*}=u-i v$.. Since \hat{u} and $\hat{\vartheta}$ are real, we have

$$
\left.\left(x^{*}\right)^{\wedge}(h)=\hat{u}-i \hat{v}\right](h) \text { for every } h \in \Delta(\text { i.e. })\left(x^{*}\right)^{\wedge}=\bar{\wedge}
$$

Thus \bar{A} is closed under complex conjugation. By Stone Weierstrass theorem is dense in $C[\Delta]$

If $x \in A$ and $y=x x^{*}$, then $\mathrm{y}=\mathrm{y}^{*}$. Hence $\left\|y^{2}\right\|=\|y\|^{2}$. By induction, we get that llymi $\left\|y^{m}\right\|=\|y\|^{m}$ for every $m=2^{n}$.

Hence $\|\hat{y}\|_{\infty}=\|y\|$ by the spectral radius formula. Since $\mathrm{y}=\mathrm{xx}^{*}$
we have $\hat{y}=\hat{x}\left(x^{*} \hat{)}\right)=\hat{x} \overline{\hat{x}}=|\hat{x}|^{2}$

Hence $\|\hat{x}\|_{\infty}{ }^{2}=\|y\|=\left\|x x^{*}\right\|=\|x\|^{2}$ or $\quad\|\hat{x}\|_{\infty}=\|x\| .$.

Thus $x \rightarrow \hat{x}$ is an isometry. Hence \bar{A} is closed in $C(\Delta)$. Since A is also dense in $C(\Delta)$, we conclude that $\hat{A}=C(\Delta)$. . Hence the proof.
3.3.Theorem : If A is a commutative B^{*} algebra which contains an element x such that the polynomials in x and x^{*} are dense in A. then the formula $(\Psi f)^{\wedge}=f o \hat{x}$ defines an isometric isomorphism Ψ of $C(\sigma(x))$ onto A which statisfies.
$\Psi \hat{f}=(\Psi f) *$ for every $f \in C(\sigma(x))$. More over if $f(\lambda)=\lambda$ on $\sigma(x)$ then $\Psi f=x$.
Proof:Let Δ be the maximal ideal space of A. We know that \hat{x} is a continuous function on Δ. The range of \hat{x} is $\sigma(x)$. Suppose $h_{1}, h_{2} \in \Delta$ and $\hat{x}\left(h_{2}\right)$, then $h_{1}(x)=h_{2}(x)$ and hence $h_{1}\left(x^{*}\right)=h_{2}\left(x^{*}\right)$ by the previous theorem. If P is any polynomial in x and x^{*}, then $h_{1}(P)=h_{2}(P)$ since h_{1}, and h_{2}, are homomorphisms. By hypothesis, the elements of the form $\mathrm{P}\left(\mathrm{x}, \mathrm{x}^{*}\right)$ are dense in A and since h_{1}, and h_{2}, are continuous we have $h_{1}(y)=h_{2}(y)$ for every $y \in A$. Hence $\mathrm{h}_{1}=\mathrm{h}_{2}$. Hence we have proved that $\hat{x}\left(h_{1}\right)=\hat{x}\left(h_{2}\right)$ for every $y \in A$. Hence $\mathrm{h}_{1}=\mathrm{h}_{2}$, (i.e.) \hat{x} is $1-1$. Since \hat{x} is continuous and onto $\sigma(x)$ and $|-|$ we have that x is homeomorphism of Δ onto $\sigma(x)$ (By Vadiyanatha swamy's theorem). The mapping $f \rightarrow f o \hat{x}$ is therefore an isometric isomorphism of $C(\sigma(x)) \rightarrow C(\Delta)$ which preserves complex conjugation.

By the previous theorem, each fox is the Gelfand tranform of a unique elements of A, which we denote by Ψf and which satisfies $\|\Psi f\|=\|f\|_{\infty}$ [Since we have that $\left(x^{*}\right)^{\wedge}=\hat{x}$ by the previous theorem]. We have $\Psi \hat{f}=(\Psi(f))^{*}$. If $f(\lambda)=\lambda$, then f o $\hat{x}=\hat{x}$ so that we have $(\Psi \hat{f})=\hat{x}(i e) \Psi f=x$.

We are interested in knowing the existence of square roots in a Banach algebra. The following theorem is one in that direction.
3.4.Theorem :Suppose A is a commutative Banach algebra with an involution. If x is a self adjoint element of A and if $\sigma(x)$ contains no real number $\lambda \leq 0$, then there exists $y \in A$ with $y^{2}=x$ and $\mathrm{y}=\mathrm{y}^{*}$.

Proof:Let R denote the non positive real numbers and let $\Omega=C-R^{-}$.. There exists a holomorphic function $f \in H(\Omega)$ such that $f^{2}(\lambda)$ and $\mathrm{f}(1)=1$. Since $\sigma(x) \subset \Omega$, we can define $y \in A$ as

$$
y=\hat{f}(x)=\frac{1}{2 \pi i} \int_{\Gamma} f(\lambda)(\lambda e-x)^{-1} d \lambda
$$

Where Γ is any contour that surrounds $\sigma(x)$ in Ω. Then it can be proved that $\mathrm{y}^{2}=$ x [For a proof the student is referred to Defn and theorem of "Functional Analysis" by Rudin. This is the required y and $y^{*}=y$. To prove $y^{*}=y$ we need what is called Runge's theorem in complex analysis.

Since Ω is simply connected 'Runges'. Theorem gives polynomials P , that converge to funiformly on compact subsets of Ω. Define Q_{n}, by
$2 Q_{n}(\lambda)=P_{n}(\lambda)+\overline{P_{n}(\lambda)}$. Since $f(\bar{\lambda})=\overline{f(\lambda)}$ the polynomials $Q_{n} \rightarrow f$ in the same manner [(ie) uniformly on compact sets]

Define $y_{n}=Q_{n}(x) .(n=1,2,3, \ldots \ldots$.$) By definition, the polynomials Q_{n}$ have real coefficients. Since $\mathrm{x}=\mathrm{x}^{*}$, if follows that $\mathrm{y}_{\mathrm{n}},=\mathrm{y}_{\mathrm{n}}{ }^{*}$

The element $y=\lim _{n \rightarrow \infty} y_{n}$, and hence $\mathrm{y}=\mathrm{y}^{*}$. if f^{*} is continuous. Even if f^{*} is not assumed to be continuous we can give a different argument to prove that $\mathrm{y}=\mathrm{y}$ * as follows.

Let R be the radical of A . Let $\pi: A \rightarrow A \backslash R$ be the quoteint map. Define an involution in A / R by
$[\pi(a)]^{*}=\pi\left(a^{*}\right)$ for $a \in A$
If a is heremitian, then so is it $\pi(a)$
Since π it is continuous, $\pi\left(y_{n}\right) \rightarrow \pi(y)$
Since A / R is isomorphic to A. A/R is semi simple and therefore every involution in A / R is continuous. Hence $\pi(y)$ is hermitian. Hence $\pi\left(y-y^{*}\right)=0$ (ie) $y-y^{*}$ is in the radical of A .

Now we can write $\mathrm{y}=\mathrm{u}+\mathrm{iv}$ where u and v are hermitian. Since $y-y^{*} \in R$, hermitian v belongs to the radical of A. Since $\mathrm{x}=\mathrm{y}^{2}$ we have $x=u^{2}-v^{2}+2 i u v$. .

Let h be a complex homomorphism on A. Since v is in the radical of $\mathrm{A}, \mathrm{h}(\mathrm{v})=0$. Hence $h(x)=[h(u)]^{2}$ By luypothesis $0 \notin \sigma(x)$. Hence $h(x) \neq 0$. Hence $h(x) \neq 0$. This is true for every $h \in \Delta$ (ie) u is invertible.

Since $x=x$ *
and since $x=u^{2}-v^{2}+2 i u v$, we have that uy $=0$

Since $\mathrm{v}=\mathrm{u}^{-1}(\mathrm{u} v)$ we have that $\mathrm{v}=\mathrm{u}^{-1} .0=0$
Hence $v=u$ and hence $y^{*}=u^{*}$ But u is hermitian and hence $y^{*}=y$

REFERENCES

1. Dudley, R. M. (2002). Real Analysis and Probability (2 ed.). Cambridge University Press. ISBN 0-521-00754-2.
2. Folland, Gerald B. (1999). Real Analysis: Modern Techniques and their Applications. Wiley. ISBN 0-471-31716-0.
3. Royden, H. L. (1988). Real Analysis. Prentice Hall. ISBN 0-02-404151-3.
4. Carothers, N. L. (2000). Real Analysis. Cambridge University Press. ISBN 0-521-49756-6.
5. Strichartz, Robert (2000). The Way of Analysis. Jones and Bartlett. ISBN 0-7637-1497-6.
