<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE article PUBLIC "-//NLM//DTD JATS (Z39.96) Journal Publishing DTD v1.2d1 20170631//EN" "JATS-journalpublishing1.dtd">
<ArticleSet>
  <Article>
    <Journal>
      <PublisherName>ijesm</PublisherName>
      <JournalTitle>International Journal of Engineering, Science and</JournalTitle>
      <PISSN>I</PISSN>
      <EISSN>S</EISSN>
      <Volume-Issue>Volume 6, Issue 8,</Volume-Issue>
      <PartNumber/>
      <IssueTopic>Multidisciplinary</IssueTopic>
      <IssueLanguage>English</IssueLanguage>
      <Season>December 2017 (Special Issue)</Season>
      <SpecialIssue>N</SpecialIssue>
      <SupplementaryIssue>N</SupplementaryIssue>
      <IssueOA>Y</IssueOA>
      <PubDate>
        <Year>2017</Year>
        <Month>12</Month>
        <Day>24</Day>
      </PubDate>
      <ArticleType>Engineering, Science and Mathematics</ArticleType>
      <ArticleTitle>Laguerre Wavelet based Numerical Method for the Solution of Differential Equations with Variable Coeficients</ArticleTitle>
      <SubTitle/>
      <ArticleLanguage>English</ArticleLanguage>
      <ArticleOA>Y</ArticleOA>
      <FirstPage>40</FirstPage>
      <LastPage>48</LastPage>
      <AuthorList>
        <Author>
          <FirstName>S. C. Shiralashetti*a Kumbinarasaiah</FirstName>
          <LastName>S**b</LastName>
          <AuthorLanguage>English</AuthorLanguage>
          <Affiliation/>
          <CorrespondingAuthor>N</CorrespondingAuthor>
          <ORCID/>
          <FirstName>S. S. Naregal***c</FirstName>
          <LastName/>
          <AuthorLanguage>English</AuthorLanguage>
          <Affiliation/>
          <CorrespondingAuthor>Y</CorrespondingAuthor>
          <ORCID/>
        </Author>
      </AuthorList>
      <DOI/>
      <Abstract>Wavelet transforms or wavelet analysis is a recently developed mathematical tool for many problems. Wavelets also can be applied in numerical analysis. In this article, we present a Laguerre wavelet based numerical method for the solution of differential equations. The proposed technique utilizes the Laguerre wavelets basis in conjunction with collocation technique. The Laguerre wavelets basis are derived and utilized for the solution of some typical ordinary differential equations. Convergence analysis for the proposed technique has also been given. Numerical examples are provided to illustrate the efficiency and accuracy of the technique. The results show that the proposed way are quite reasonable when compare to exact solution.</Abstract>
      <AbstractLanguage>English</AbstractLanguage>
      <Keywords>Laguerre wavelet series, Collocation Technique, Multiresolution analysis, ODE.</Keywords>
      <URLs>
        <Abstract>https://ijesm.co.in/ubijournal-v1copy/journals/abstract.php?article_id=4216&amp;title=Laguerre Wavelet based Numerical Method for the Solution of Differential Equations with Variable Coeficients</Abstract>
      </URLs>
      <References>
        <ReferencesarticleTitle>References</ReferencesarticleTitle>
        <ReferencesfirstPage>16</ReferencesfirstPage>
        <ReferenceslastPage>19</ReferenceslastPage>
        <References/>
      </References>
    </Journal>
  </Article>
</ArticleSet>